Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 314 (5806): 1780-1783

Copyright © 2006 by the American Association for the Advancement of Science

Polymorphic Secreted Kinases Are Key Virulence Factors in Toxoplasmosis

J. P. J. Saeij,1* J. P. Boyle,1* S. Coller,1 S. Taylor,2 L. D. Sibley,2 E. T. Brooke-Powell,3 J. W. Ajioka,3 J. C. Boothroyd1{dagger}

Abstract: The majority of known Toxoplasma gondii isolates from Europe and North America belong to three clonal lines that differ dramatically in their virulence, depending on the host. To identify the responsible genes, we mapped virulence in F1 progeny derived from crosses between type II and type III strains, which we introduced into mice. Five virulence (VIR) loci were thus identified, and for two of these, genetic complementation showed that a predicted protein kinase (ROP18 and ROP16, respectively) is the key molecule. Both are hypervariable rhoptry proteins that are secreted into the host cell upon invasion. These results suggest that secreted kinases unique to the Apicomplexa are crucial in the host-pathogen interaction.

1 Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
2 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
3 Department of Pathology, Cambridge University, Cambridge, CB2 1QP, UK.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: john.boothroyd{at}stanford.edu

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Differential Locus Expansion Distinguishes Toxoplasmatinae Species and Closely Related Strains of Toxoplasma gondii.
Y. Adomako-Ankomah, G. M. Wier, A. L. Borges, H. E. Wand, and J. P. Boyle (2014)
mBio 5, e01003-13
   Abstract »    Full Text »    PDF »
Toxoplasma GRA7 effector increases turnover of immunity-related GTPases and contributes to acute virulence in the mouse.
A. Alaganan, S. J. Fentress, K. Tang, Q. Wang, and L. D. Sibley (2014)
PNAS 111, 1126-1131
   Abstract »    Full Text »    PDF »
Structure of the Toxoplasma gondii ROP18 Kinase Domain Reveals a Second Ligand Binding Pocket Required for Acute Virulence.
D. Lim, D. A. Gold, L. Julien, E. E. Rosowski, W. Niedelman, M. B. Yaffe, and J. P. J. Saeij (2013)
J. Biol. Chem. 288, 34968-34980
   Abstract »    Full Text »    PDF »
Toxoplasma Serotype Is Associated With Development of Ocular Toxoplasmosis.
L. Shobab, U. Pleyer, J. Johnsen, S. Metzner, E. R. James, N. Torun, M. P. Fay, O. Liesenfeld, and M. E. Grigg (2013)
The Journal of Infectious Disease 208, 1520-1528
   Abstract »    Full Text »    PDF »
Immune to defeat.
M. L. Reese (2013)
eLife Sci 2, e01599
   Abstract »    Full Text »    PDF »
Toxoplasma Transcription Factor TgAP2XI-5 Regulates the Expression of Genes Involved in Parasite Virulence and Host Invasion.
R. Walker, M. Gissot, L. Huot, T. D. Alayi, D. Hot, G. Marot, C. Schaeffer-Reiss, A. Van Dorsselaer, K. Kim, and S. Tomavo (2013)
J. Biol. Chem. 288, 31127-31138
   Abstract »    Full Text »    PDF »
MAPK Kinase 3 Potentiates Chlamydia HSP60-Induced Inflammatory Response through Distinct Activation of NF-{kappa}B.
Y. Kang, F. Wang, Z. Lu, H. Ying, H. Zhang, W. Ding, C. Wang, and L. Shi (2013)
J. Immunol. 191, 386-394
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Rhoptry 16 Kinase Promotes Host Resistance to Oral Infection and Intestinal Inflammation Only in the Context of the Dense Granule Protein GRA15.
K. D. C. Jensen, K. Hu, R. J. Whitmarsh, M. A. Hassan, L. Julien, D. Lu, L. Chen, C. A. Hunter, and J. P. J. Saeij (2013)
Infect. Immun. 81, 2156-2167
   Abstract »    Full Text »    PDF »
Toxoplasma gondii modulates the dynamics of human monocyte adhesion to vascular endothelium under fluidic shear stress.
K. S. Harker, N. Ueno, T. Wang, C. Bonhomme, W. Liu, and M. B. Lodoen (2013)
J. Leukoc. Biol. 93, 789-800
   Abstract »    Full Text »    PDF »
Hammondia hammondi, an avirulent relative of Toxoplasma gondii, has functional orthologs of known T. gondii virulence genes.
K. A. Walzer, Y. Adomako-Ankomah, R. A. Dam, D. C. Herrmann, G. Schares, J. P. Dubey, and J. P. Boyle (2013)
PNAS 110, 7446-7451
   Abstract »    Full Text »    PDF »
Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals.
K. J. Esch and C. A. Petersen (2013)
Clin. Microbiol. Rev. 26, 58-85
   Abstract »    Full Text »    PDF »
Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse.
J. Lilue, U. B. Muller, T. Steinfeldt, and J. C. Howard (2013)
eLife Sci 2, e01298
   Abstract »    Full Text »    PDF »
Integrated Bioinformatic and Targeted Deletion Analyses of the SRS Gene Superfamily Identify SRS29C as a Negative Regulator of Toxoplasma Virulence.
J. D. Wasmuth, V. Pszenny, S. Haile, E. M. Jansen, A. T. Gast, A. Sher, J. P. Boyle, M. J. Boulanger, J. Parkinson, and M. E. Grigg (2012)
mBio 3, e00321-12
   Abstract »    Full Text »    PDF »
A Focused Small-Molecule Screen Identifies 14 Compounds with Distinct Effects on Toxoplasma gondii.
E. T. Kamau, A. R. Srinivasan, M. J. Brown, M. G. Fair, E. J. Caraher, and J. P. Boyle (2012)
Antimicrob. Agents Chemother. 56, 5581-5590
   Abstract »    Full Text »    PDF »
Admixture and recombination among Toxoplasma gondii lineages explain global genome diversity.
S. Minot, M. B. Melo, F. Li, D. Lu, W. Niedelman, S. S. Levine, and J. P. J. Saeij (2012)
PNAS 109, 13458-13463
   Abstract »    Full Text »    PDF »
Adenylate Cyclases of Trypanosoma brucei Inhibit the Innate Immune Response of the Host.
D. Salmon, G. Vanwalleghem, Y. Morias, J. Denoeud, C. Krumbholz, F. Lhomme, S. Bachmaier, M. Kador, J. Gossmann, F. B. S. Dias, et al. (2012)
Science 337, 463-466
   Abstract »    Full Text »    PDF »
Epidemiology of and Diagnostic Strategies for Toxoplasmosis.
F. Robert-Gangneux and M.-L. Darde (2012)
Clin. Microbiol. Rev. 25, 264-296
   Abstract »    Full Text »    PDF »
Differential Gene Expression in Mice Infected with Distinct Toxoplasma Strains.
R. D. Hill, J. S. Gouffon, A. M. Saxton, and C. Su (2012)
Infect. Immun. 80, 968-974
   Abstract »    Full Text »    PDF »
An Inside Job: Hacking into Janus Kinase/Signal Transducer and Activator of Transcription Signaling Cascades by the Intracellular Protozoan Toxoplasma gondii.
E. Y. Denkers, D. J. Bzik, B. A. Fox, and B. A. Butcher (2012)
Infect. Immun. 80, 476-482
   Abstract »    Full Text »    PDF »
The State of Research for AIDS-Associated Opportunistic Infections and the Importance of Sustaining Smaller Research Communities.
A. P. Sinai, E. S. Kaneshiro, H. Ward, L. M. Weiss, and M. T. Cushion (2012)
Eukaryot. Cell 11, 90-97
   Full Text »    PDF »
A Novel Benzodioxole-Containing Inhibitor of Toxoplasma gondii Growth Alters the Parasite Cell Cycle.
E. Kamau, T. Meehan, M. D. Lavine, G. Arrizabalaga, G. Mustata Wilson, and J. Boyle (2011)
Antimicrob. Agents Chemother. 55, 5438-5451
   Abstract »    Full Text »    PDF »
A Monomorphic Haplotype of Chromosome Ia Is Associated with Widespread Success in Clonal and Nonclonal Populations of Toxoplasma gondii.
A. Khan, N. Miller, D. S. Roos, J. P. Dubey, D. Ajzenberg, M. L. Darde, J. W. Ajioka, B. Rosenthal, and L. D. Sibley (2011)
mBio 2, e00228-11
   Abstract »    Full Text »    PDF »
Genetic approaches for understanding virulence in Toxoplasma gondii.
D. R. Weilhammer and A. Rasley (2011)
Briefings in Functional Genomics 10, 365-373
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Induces B7-2 Expression through Activation of JNK Signal Transduction.
P. Morgado, Y.-C. Ong, J. C. Boothroyd, and M. B. Lodoen (2011)
Infect. Immun. 79, 4401-4412
   Abstract »    Full Text »    PDF »
A Conserved Non-canonical Motif in the Pseudoactive Site of the ROP5 Pseudokinase Domain Mediates Its Effect on Toxoplasma Virulence.
M. L. Reese and J. C. Boothroyd (2011)
J. Biol. Chem. 286, 29366-29375
   Abstract »    Full Text »    PDF »
ATF6{beta} is a host cellular target of the Toxoplasma gondii virulence factor ROP18.
M. Yamamoto, J. S. Ma, C. Mueller, N. Kamiyama, H. Saiga, E. Kubo, T. Kimura, T. Okamoto, M. Okuyama, H. Kayama, et al. (2011)
J. Exp. Med. 208, 1533-1546
   Abstract »    Full Text »    PDF »
Virulence differences in Toxoplasma mediated by amplification of a family of polymorphic pseudokinases.
M. S. Behnke, A. Khan, J. C. Wootton, J. P. Dubey, K. Tang, and L. D. Sibley (2011)
PNAS 108, 9631-9636
   Abstract »    Full Text »    PDF »
Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence.
M. L. Reese, G. M. Zeiner, J. P. J. Saeij, J. C. Boothroyd, and J. P. Boyle (2011)
PNAS 108, 9625-9630
   Abstract »    Full Text »    PDF »
Modulation of Early {beta}-Defensin-2 Production as a Mechanism Developed by Type I Toxoplasma gondii To Evade Human Intestinal Immunity.
V. Morampudi, M. Y. Braun, and S. D'Souza (2011)
Infect. Immun. 79, 2043-2050
   Abstract »    Full Text »    PDF »
Strain-specific activation of the NF-{kappa}B pathway by GRA15, a novel Toxoplasma gondii dense granule protein.
E. E. Rosowski, D. Lu, L. Julien, L. Rodda, R. A. Gaiser, K. D. C. Jensen, and J. P. J. Saeij (2011)
J. Exp. Med. 208, 195-212
   Abstract »    Full Text »    PDF »
Protective Immunity Induced by Toxoplasma gondii Rhoptry Protein 16 against Toxoplasmosis in Mice.
Z.-G. Yuan, X.-X. Zhang, X.-H. He, E. Petersen, D.-H. Zhou, Y. He, R.-Q. Lin, X.-Z. Li, X.-L. Chen, X.-R. Shi, et al. (2011)
Clin. Vaccine Immunol. 18, 119-124
   Abstract »    Full Text »    PDF »
Unifying Themes in Microbial Associations with Animal and Plant Hosts Described Using the Gene Ontology.
T. Torto-Alalibo, C. W. Collmer, M. Gwinn-Giglio, M. Lindeberg, S. Meng, M. C. Chibucos, T.-T. Tseng, J. Lomax, B. Biehl, A. Ireland, et al. (2010)
Microbiol. Mol. Biol. Rev. 74, 479-503
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Activates Hypoxia-inducible Factor (HIF) by Stabilizing the HIF-1{alpha} Subunit via Type I Activin-like Receptor Kinase Receptor Signaling.
M. Wiley, K. R. Sweeney, D. A. Chan, K. M. Brown, C. McMurtrey, E. W. Howard, A. J. Giaccia, and I. J. Blader (2010)
J. Biol. Chem. 285, 26852-26860
   Abstract »    Full Text »    PDF »
Virulence of Toxoplasma gondii Is Associated with Distinct Dendritic Cell Responses and Reduced Numbers of Activated CD8+ T Cells.
E. D. Tait, K. A. Jordan, C. D. Dupont, T. H. Harris, B. Gregg, E. H. Wilson, M. Pepper, F. Dzierszinski, D. S. Roos, and C. A. Hunter (2010)
J. Immunol. 185, 1502-1512
   Abstract »    Full Text »    PDF »
Role for Parasite Genetic Diversity in Differential Host Responses to Trypanosoma brucei Infection.
L. J. Morrison, S. McLellan, L. Sweeney, C. N. Chan, A. MacLeod, A. Tait, and C. M. R. Turner (2010)
Infect. Immun. 78, 1096-1108
   Abstract »    Full Text »    PDF »
A single polymorphic amino acid on Toxoplasma gondii kinase ROP16 determines the direct and strain-specific activation of Stat3.
M. Yamamoto, D. M. Standley, S. Takashima, H. Saiga, M. Okuyama, H. Kayama, E. Kubo, H. Ito, M. Takaura, T. Matsuda, et al. (2009)
J. Exp. Med. 206, 2747-2760
   Abstract »    Full Text »    PDF »
Genetic diversity of Toxoplasma gondii in animals and humans.
L. D. Sibley, A. Khan, J. W. Ajioka, and B. M. Rosenthal (2009)
Phil Trans R Soc B 364, 2749-2761
   Abstract »    Full Text »    PDF »
Role of the Type III Secretion System in a Hypervirulent Lineage of Bordetella bronchiseptica.
A. M. Buboltz, T. L. Nicholson, L. S. Weyrich, and E. T. Harvill (2009)
Infect. Immun. 77, 3969-3977
   Abstract »    Full Text »    PDF »
Proteome Analysis of Plasmodium falciparum Extracellular Secretory Antigens at Asexual Blood Stages Reveals a Cohort of Proteins with Possible Roles in Immune Modulation and Signaling.
M. Singh, P. Mukherjee, K. Narayanasamy, R. Arora, S. D. Sen, S. Gupta, K. Natarajan, and P. Malhotra (2009)
Mol. Cell. Proteomics 8, 2102-2118
   Abstract »    Full Text »    PDF »
Forward Genetics in Toxoplasma gondii Reveals a Family of Rhoptry Kinases That Mediates Pathogenesis.
L. D. Sibley, W. Qiu, S. Fentress, S. J. Taylor, A. Khan, and R. Hui (2009)
Eukaryot. Cell 8, 1085-1093
   Full Text »    PDF »
Novel structural and regulatory features of rhoptry secretory kinases in Toxoplasma gondii.
W. Qiu, A. Wernimont, K. Tang, S. Taylor, V. Lunin, M. Schapira, S. Fentress, R. Hui, and L. D. Sibley (2009)
EMBO J. 28, 969-979
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Presentations at the 10th International Workshops on Opportunistic Protists: 100 Years and Counting.
S. K. Halonen and L. M. Weiss (2009)
Eukaryot. Cell 8, 437-440
   Full Text »    PDF »
Host ER-parasitophorous vacuole interaction provides a route of entry for antigen cross-presentation in Toxoplasma gondii-infected dendritic cells.
R. S. Goldszmid, I. Coppens, A. Lev, P. Caspar, I. Mellman, and A. Sher (2009)
J. Exp. Med. 206, 399-410
   Abstract »    Full Text »    PDF »
The Toxoplasma gondii Dense Granule Protein GRA7 Is Phosphorylated upon Invasion and Forms an Unexpected Association with the Rhoptry Proteins ROP2 and ROP4.
J. D. Dunn, S. Ravindran, S.-K. Kim, and J. C. Boothroyd (2008)
Infect. Immun. 76, 5853-5861
   Abstract »    Full Text »    PDF »
Intervacuolar Transport and Unique Topology of GRA14, a Novel Dense Granule Protein in Toxoplasma gondii.
M. E. Rome, J. R. Beck, J. M. Turetzky, P. Webster, and P. J. Bradley (2008)
Infect. Immun. 76, 4865-4875
   Abstract »    Full Text »    PDF »
Toxoplasma gondii Rhoptry Discharge Correlates with Activation of the Early Growth Response 2 Host Cell Transcription Factor.
E. D. Phelps, K. R. Sweeney, and I. J. Blader (2008)
Infect. Immun. 76, 4703-4712
   Abstract »    Full Text »    PDF »
Expression Quantitative Trait Locus Mapping of Toxoplasma Genes Reveals Multiple Mechanisms for Strain-Specific Differences in Gene Expression.
J. P. Boyle, J. P. J. Saeij, S. Y. Harada, J. W. Ajioka, and J. C. Boothroyd (2008)
Eukaryot. Cell 7, 1403-1414
   Abstract »    Full Text »    PDF »
Proteomics and Glycomics Analyses of N-Glycosylated Structures Involved in Toxoplasma gondii-Host Cell Interactions.
S. Fauquenoy, W. Morelle, A. Hovasse, A. Bednarczyk, C. Slomianny, C. Schaeffer, A. Van Dorsselaer, and S. Tomavo (2008)
Mol. Cell. Proteomics 7, 891-910
   Abstract »    Full Text »    PDF »
Organellar dynamics during the cell cycle of Toxoplasma gondii.
M. Nishi, K. Hu, J. M. Murray, and D. S. Roos (2008)
J. Cell Sci. 121, 1559-1568
   Abstract »    Full Text »    PDF »
Phosphoinositide-3-Kinase-Dependent, MyD88-Independent Induction of CC-Type Chemokines Characterizes the Macrophage Response to Toxoplasma gondii Strains with High Virulence.
C. W. Lee, W. Sukhumavasi, and E. Y. Denkers (2007)
Infect. Immun. 75, 5788-5797
   Abstract »    Full Text »    PDF »
Presentation of Toxoplasma gondii Antigens via the Endogenous Major Histocompatibility Complex Class I Pathway in Nonprofessional and Professional Antigen-Presenting Cells.
F. Dzierszinski, M. Pepper, J. S. Stumhofer, D. F. LaRosa, E. H. Wilson, L. A. Turka, S. K. Halonen, C. A. Hunter, and D. S. Roos (2007)
Infect. Immun. 75, 5200-5209
   Abstract »    Full Text »    PDF »
Discovery of parasite virulence genes reveals a unique regulator of chromosome condensation 1 ortholog critical for efficient nuclear trafficking.
M. B. Frankel, D. G. Mordue, and L. J. Knoll (2007)
PNAS 104, 10181-10186
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882