Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 315 (5813): 863-866

Copyright © 2007 by the American Association for the Advancement of Science

Antennal Mechanosensors Mediate Flight Control in Moths

Sanjay P. Sane,1* Alexandre Dieudonné,1 Mark A. Willis,2 Thomas L. Daniel1

Abstract: Flying insects have evolved sophisticated sensory capabilities to achieve rapid course control during aerial maneuvers. Among two-winged insects such as houseflies and their relatives, the hind wings are modified into club-shaped, mechanosensory halteres, which detect Coriolis forces and thereby mediate flight stability during maneuvers. Here, we show that mechanosensory input from the antennae serves a similar role during flight in hawk moths, which are four-winged insects. The antennae of flying moths vibrate and experience Coriolis forces during aerial maneuvers. The antennal vibrations are transduced by individual units of Johnston's organs at the base of their antennae in a frequency range characteristic of the Coriolis input. Reduction of the mechanical input to Johnston's organs by removing the antennal flagellum of these moths severely disrupted their flight stability, but reattachment of the flagellum restored their flight control. The antennae thus play a crucial role in maintaining flight stability of moths.

1 Department of Biology, University of Washington, Seattle, WA 98195, USA.
2 Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.

* To whom correspondence should be addressed. E-mail: sane{at}u.washington.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae.
S. B. Fuller, A. D. Straw, M. Y. Peek, R. M. Murray, and M. H. Dickinson (2014)
PNAS 111, E1182-E1191
   Abstract »    Full Text »    PDF »
Visual feedback influences antennal positioning in flying hawk moths.
A. Krishnan and S. P. Sane (2014)
J. Exp. Biol. 217, 908-917
   Abstract »    Full Text »    PDF »
Vision-based flight control in the hawkmoth Hyles lineata.
S. P. Windsor, R. J. Bomphrey, and G. K. Taylor (2014)
J R Soc Interface 11, 20130921
   Abstract »    Full Text »    PDF »
Wing and body motion and aerodynamic and leg forces during take-off in droneflies.
M. W. Chen, Y. L. Zhang, and M. Sun (2013)
J R Soc Interface 10, 20130808
   Abstract »    Full Text »    PDF »
Active and passive stabilization of body pitch in insect flight.
L. Ristroph, G. Ristroph, S. Morozova, A. J. Bergou, S. Chang, J. Guckenheimer, Z. J. Wang, and I. Cohen (2013)
J R Soc Interface 10, 20130237
   Abstract »    Full Text »    PDF »
Flexible strategies for flight control: an active role for the abdomen.
J. P. Dyhr, K. A. Morgansen, T. L. Daniel, and N. J. Cowan (2013)
J. Exp. Biol. 216, 1523-1536
   Abstract »    Full Text »    PDF »
Feed-forward and visual feedback control of head roll orientation in wasps (Polistes humilis, Vespidae, Hymenoptera).
S. Viollet and J. Zeil (2013)
J. Exp. Biol. 216, 1280-1291
   Abstract »    Full Text »    PDF »
The neural mechanisms of antennal positioning in flying moths.
A. Krishnan, S. Prabhakar, S. Sudarsan, and S. P. Sane (2012)
J. Exp. Biol. 215, 3096-3105
   Abstract »    Full Text »    PDF »
Damping in flapping flight and its implications for manoeuvring, scaling and evolution.
T. L. Hedrick (2011)
J. Exp. Biol. 214, 4073-4081
   Abstract »    Full Text »    PDF »
The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta).
B. Cheng, X. Deng, and T. L. Hedrick (2011)
J. Exp. Biol. 214, 4092-4106
   Abstract »    Full Text »    PDF »
The role of vision in odor-plume tracking by walking and flying insects.
M. A. Willis, J. L. Avondet, and E. Zheng (2011)
J. Exp. Biol. 214, 4121-4132
   Abstract »    Full Text »    PDF »
Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds.
T. Alerstam, J. W. Chapman, J. Backman, A. D. Smith, H. Karlsson, C. Nilsson, D. R. Reynolds, R. H. G. Klaassen, and J. K. Hill (2011)
Proc R Soc B 278, 3074-3080
   Abstract »    Full Text »    PDF »
Moment-to-moment flight manoeuvres of the female yellow fever mosquito (Aedes aegypti L.) in response to plumes of carbon dioxide and human skin odour.
T. Dekker and R. T. Carde (2011)
J. Exp. Biol. 214, 3480-3494
   Abstract »    Full Text »    PDF »
Bat wing sensors support flight control.
S. Sterbing-D'Angelo, M. Chadha, C. Chiu, B. Falk, W. Xian, J. Barcelo, J. M. Zook, and C. F. Moss (2011)
PNAS 108, 11291-11296
   Abstract »    Full Text »    PDF »
A single muscle's multifunctional control potential of body dynamics for postural control and running.
S. Sponberg, A. J. Spence, C. H. Mullens, and R. J. Full (2011)
Phil Trans R Soc B 366, 1592-1605
   Abstract »    Full Text »    PDF »
Active and Passive Antennal Movements during Visually Guided Steering in Flying Drosophila.
A. Mamiya, A. D. Straw, E. Tomasson, and M. H. Dickinson (2011)
J. Neurosci. 31, 6900-6914
   Abstract »    Full Text »    PDF »
Honeybees as a Model for the Study of Visually Guided Flight, Navigation, and Biologically Inspired Robotics.
M. V. Srinivasan (2011)
Physiol Rev 91, 413-460
   Abstract »    Full Text »    PDF »
Antennal regulation of migratory flight in the neotropical moth Urania fulgens.
S. P. Sane, R. B. Srygley, and R. Dudley (2010)
Biol Lett 6, 406-409
   Abstract »    Full Text »    PDF »
Wide-field motion tuning in nocturnal hawkmoths.
J. C. Theobald, E. J. Warrant, and D. C. O'Carroll (2010)
Proc R Soc B 277, 853-860
   Abstract »    Full Text »    PDF »
Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles.
L. Ristroph, A. J. Bergou, G. Ristroph, K. Coumes, G. J. Berman, J. Guckenheimer, Z. J. Wang, and I. Cohen (2010)
PNAS 107, 4820-4824
   Abstract »    Full Text »    PDF »
A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
A. M. Reynolds, D. R. Reynolds, A. D. Smith, and J. W. Chapman (2010)
Proc R Soc B 277, 765-772
   Abstract »    Full Text »    PDF »
Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope.
J. L. Fox, A. L. Fairhall, and T. L. Daniel (2010)
PNAS 107, 3840-3845
   Abstract »    Full Text »    PDF »
Ant antennae: are they sites for magnetoreception?.
J. F. de Oliveira, E. Wajnberg, D. M. de Souza Esquivel, S. Weinkauf, M. Winklhofer, and M. Hanzlik (2010)
J R Soc Interface 7, 143-152
   Abstract »    Full Text »    PDF »
The biomechanics of sensory organs.
S. P. Sane and M. J. McHenry (2009)
Integr. Comp. Biol.
   Abstract »    Full Text »    PDF »
Visual stimuli induced by self-motion and object-motion modify odour-guided flight of male moths (Manduca sexta L.).
R. Verspui and J. R. Gray (2009)
J. Exp. Biol. 212, 3272-3282
   Abstract »    Full Text »    PDF »
Antennal Circadian Clocks Coordinate Sun Compass Orientation in Migratory Monarch Butterflies.
C. Merlin, R. J. Gegear, and S. M. Reppert (2009)
Science 325, 1700-1704
   Abstract »    Full Text »    PDF »
Hysteresis of soft joints embedded with fluid-filled microchannels.
A. Ghatak, A. Majumder, and R. Kumar (2009)
J R Soc Interface 6, 203-208
   Abstract »    Full Text »    PDF »
Does a 'turbophoretic' effect account for layer concentrations of insects migrating in the stable night-time atmosphere?.
A.M Reynolds, D.R Reynolds, and J.R Riley (2009)
J R Soc Interface 6, 87-95
   Abstract »    Full Text »    PDF »
The free-flight response of Drosophila to motion of the visual environment.
M. Mronz and F.-O. Lehmann (2008)
J. Exp. Biol. 211, 2026-2045
   Abstract »    Full Text »    PDF »
Turning behaviour depends on frictional damping in the fruit fly Drosophila.
T. Hesselberg and F.-O. Lehmann (2007)
J. Exp. Biol. 210, 4319-4334
   Abstract »    Full Text »    PDF »
The role of visual and mechanosensory cues in structuring forward flight in Drosophila melanogaster.
S. A. Budick, M. B. Reiser, and M. H. Dickinson (2007)
J. Exp. Biol. 210, 4092-4103
   Abstract »    Full Text »    PDF »
HOVERING IN THE DARK.
D. Fudge (2007)
J. Exp. Biol. 210, v
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882