Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 315 (5814): 988-992

Copyright © 2007 by the American Association for the Advancement of Science

Multipotent Drosophila Intestinal Stem Cells Specify Daughter Cell Fates by Differential Notch Signaling

Benjamin Ohlstein, and Allan Spradling*

Abstract: The adult Drosophila midgut contains multipotent intestinal stem cells (ISCs) scattered along its basement membrane that have been shown by lineage analysis to generate both enterocytes and enteroendocrine cells. ISCs containing high levels of cytoplasmic Delta-rich vesicles activate the canonical Notch pathway and down-regulate Delta within their daughters, a process that programs these daughters to become enterocytes. ISCs that express little vesiculate Delta, or are genetically impaired in Notch signaling, specify their daughters to become enteroendocrine cells. Thus, ISCs control daughter cell fate by modulating Notch signaling over time. Our studies suggest that ISCs actively coordinate cell production with local tissue requirements by this mechanism.

Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution of Washington, 3520 San Martin Drive, Baltimore, MD 21218, USA.

* To whom correspondence should be addressed. E-mail: spradling{at}ciwemb.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Systematic screen of chemotherapeutics in Drosophila stem cell tumors.
M. Markstein, S. Dettorre, J. Cho, R. A. Neumuller, S. Craig-Muller, and N. Perrimon (2014)
PNAS 111, 4530-4535
   Abstract »    Full Text »    PDF »
Intestinal epithelium-derived BMP controls stem cell self-renewal in Drosophila adult midgut.
A. Tian and J. Jiang (2014)
eLife Sci 3, e01857
   Abstract »    Full Text »    PDF »
Promoting longevity by maintaining metabolic and proliferative homeostasis.
L. Wang, J. Karpac, and H. Jasper (2014)
J. Exp. Biol. 217, 109-118
   Abstract »    Full Text »    PDF »
Nutritional regulation of stem and progenitor cells in Drosophila.
J. Shim, S. Gururaja-Rao, and U. Banerjee (2013)
Development 140, 4647-4656
   Abstract »    Full Text »    PDF »
A dynamic population of stromal cells contributes to the follicle stem cell niche in the Drosophila ovary.
P. Sahai-Hernandez and T. G. Nystul (2013)
Development 140, 4490-4498
   Abstract »    Full Text »    PDF »
Brahma is essential for Drosophila intestinal stem cell proliferation and regulated by Hippo signaling.
Y. Jin, J. Xu, M.-X. Yin, Y. Lu, L. Hu, P. Li, P. Zhang, Z. Yuan, M. S. Ho, H. Ji, et al. (2013)
eLife Sci 2, e00999
   Abstract »    Full Text »    PDF »
The Osa-containing SWI/SNF chromatin-remodeling complex regulates stem cell commitment in the adult Drosophila intestine.
X. Zeng, X. Lin, and S. X. Hou (2013)
Development 140, 3532-3540
   Abstract »    Full Text »    PDF »
TSC1/2 regulates intestinal stem cell maintenance and lineage differentiation through Rheb-TORC1-S6K but independently of nutritional status or Notch regulation.
Z. Quan, P. Sun, G. Lin, and R. Xi (2013)
J. Cell Sci. 126, 3884-3892
   Abstract »    Full Text »    PDF »
Injury-induced BMP signaling negatively regulates Drosophila midgut homeostasis.
Z. Guo, I. Driver, and B. Ohlstein (2013)
J. Cell Biol. 201, 945-961
   Abstract »    Full Text »    PDF »
Notch signaling at a glance.
K. Hori, A. Sen, and S. Artavanis-Tsakonas (2013)
J. Cell Sci. 126, 2135-2140
   Abstract »    Full Text »    PDF »
The asymmetric segregation of damaged proteins is stem cell-type dependent.
M. R. Bufalino, B. DeVeale, and D. van der Kooy (2013)
J. Cell Biol. 201, 523-530
   Abstract »    Full Text »    PDF »
Migration of Drosophila intestinal stem cells across organ boundaries.
S. Takashima, M. Paul, P. Aghajanian, A. Younossi-Hartenstein, and V. Hartenstein (2013)
Development 140, 1903-1911
   Abstract »    Full Text »    PDF »
Single-cell gene expression profiling reveals functional heterogeneity of undifferentiated human epidermal cells.
D. W. M. Tan, K. B. Jensen, M. W. B. Trotter, J. T. Connelly, S. Broad, and F. M. Watt (2013)
Development 140, 1433-1444
   Abstract »    Full Text »    PDF »
Stem cells living with a Notch.
U. Koch, R. Lehal, and F. Radtke (2013)
Development 140, 689-704
   Abstract »    Full Text »    PDF »
Physiological and stem cell compartmentalization within the Drosophila midgut.
A. Marianes and A. C. Spradling (2013)
eLife Sci 2, e00886
   Abstract »    Full Text »    PDF »
Non-autonomous crosstalk between the Jak/Stat and Egfr pathways mediates Apc1-driven intestinal stem cell hyperplasia in the Drosophila adult midgut.
J. B. Cordero, R. K. Stefanatos, K. Myant, M. Vidal, and O. J. Sansom (2012)
Development 139, 4524-4535
   Abstract »    Full Text »    PDF »
Broad relays hormone signals to regulate stem cell differentiation in Drosophila midgut during metamorphosis.
X. Zeng and S. X. Hou (2012)
Development 139, 3917-3925
   Abstract »    Full Text »    PDF »
Amputation induces stem cell mobilization to sites of injury during planarian regeneration.
O. C. Guedelhoefer IV and A. S. Alvarado (2012)
Development 139, 3510-3520
   Abstract »    Full Text »    PDF »
Autocrine Platelet-derived Growth Factor-Vascular Endothelial Growth Factor Receptor-related (Pvr) Pathway Activity Controls Intestinal Stem Cell Proliferation in the Adult Drosophila Midgut.
D. Bond and E. Foley (2012)
J. Biol. Chem. 287, 27359-27370
   Abstract »    Full Text »    PDF »
Drosophila midgut homeostasis involves neutral competition between symmetrically dividing intestinal stem cells.
J. de Navascues, C. N. Perdigoto, Y. Bian, M. H. Schneider, A. J. Bardin, A. Martinez-Arias, and B. D. Simons (2012)
EMBO J. 31, 2473-2485
   Abstract »    Full Text »    PDF »
Intestinal stem cells: no longer immortal but ever so clever....
B. A. Edgar (2012)
EMBO J. 31, 2441-2443
   Abstract »    Full Text »    PDF »
Interaction of Notch Signaling Modulator Numb with {alpha}-Adaptin Regulates Endocytosis of Notch Pathway Components and Cell Fate Determination of Neural Stem Cells.
Y. Song and B. Lu (2012)
J. Biol. Chem. 287, 17716-17728
   Abstract »    Full Text »    PDF »
Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila.
Y. Song and B. Lu (2011)
Genes & Dev. 25, 2644-2658
   Abstract »    Full Text »    PDF »
Nonautonomous regulation of Drosophila midgut stem cell proliferation by the insulin-signaling pathway.
N. H. Choi, E. Lucchetta, and B. Ohlstein (2011)
PNAS 108, 18702-18707
   Abstract »    Full Text »    PDF »
Distinct levels of Notch activity for commitment and terminal differentiation of stem cells in the adult fly intestine.
C. N. Perdigoto, F. Schweisguth, and A. J. Bardin (2011)
Development 138, 4585-4595
   Abstract »    Full Text »    PDF »
Quiescent gastric stem cells maintain the adult Drosophila stomach.
M. Strand and C. A. Micchelli (2011)
PNAS 108, 17696-17701
   Abstract »    Full Text »    PDF »
Activin and GDF11 collaborate in feedback control of neuroepithelial stem cell proliferation and fate.
K. K. Gokoffski, H.-H. Wu, C. L. Beites, J. Kim, E. J. Kim, M. M. Matzuk, J. E. Johnson, A. D. Lander, and A. L. Calof (2011)
Development 138, 4131-4142
   Abstract »    Full Text »    PDF »
Tuberous sclerosis complex and Myc coordinate the growth and division of Drosophila intestinal stem cells.
A. Amcheslavsky, N. Ito, J. Jiang, and Y. T. Ip (2011)
J. Cell Biol. 193, 695-710
   Abstract »    Full Text »    PDF »
Genetic Evidence That Intestinal Notch Functions Vary Regionally and Operate through a Common Mechanism of Math1 Repression.
T.-H. Kim and R. A. Shivdasani (2011)
J. Biol. Chem. 286, 11427-11433
   Abstract »    Full Text »    PDF »
EGF signaling regulates the proliferation of intestinal stem cells in Drosophila.
B. Biteau and H. Jasper (2011)
Development 138, 1045-1055
   Abstract »    Full Text »    PDF »
Drosophila melanogaster as a model for human intestinal infection and pathology.
Y. Apidianakis and L. G. Rahme (2011)
Dis. Model. Mech. 4, 21-30
   Abstract »    Full Text »    PDF »
The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration.
P. Karpowicz, J. Perez, and N. Perrimon (2010)
Development 137, 4135-4145
   Abstract »    Full Text »    PDF »
The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration.
R. L. Shaw, A. Kohlmaier, C. Polesello, C. Veelken, B. A. Edgar, and N. Tapon (2010)
Development 137, 4147-4158
   Abstract »    Full Text »    PDF »
Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways.
F. Ren, B. Wang, T. Yue, E.-Y. Yun, Y. T. Ip, and J. Jiang (2010)
PNAS 107, 21064-21069
   Abstract »    Full Text »    PDF »
Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling.
J. R. Rock, S. H. Randell, and B. L. M. Hogan (2010)
Dis. Model. Mech. 3, 545-556
   Abstract »    Full Text »    PDF »
Adhesion molecules in the stem cell niche - more than just staying in shape?.
V. Marthiens, I. Kazanis, L. Moss, K. Long, and C. ffrench-Constant (2010)
J. Cell Sci. 123, 1613-1622
   Abstract »    Full Text »    PDF »
Transcriptional control of stem cell maintenance in the Drosophila intestine.
A. J. Bardin, C. N. Perdigoto, T. D. Southall, A. H. Brand, and F. Schweisguth (2010)
Development 137, 705-714
   Abstract »    Full Text »    PDF »
Paracrine Unpaired Signaling through the JAK/STAT Pathway Controls Self-renewal and Lineage Differentiation of Drosophila Intestinal Stem Cells.
G. Lin, N. Xu, and R. Xi (2010)
J Mol Cell Biol 2, 37-49
   Abstract »    Full Text »    PDF »
A Transient Niche Regulates the Specification of Drosophila Intestinal Stem Cells.
D. Mathur, A. Bost, I. Driver, and B. Ohlstein (2010)
Science 327, 210-213
   Abstract »    Full Text »    PDF »
Synergy between bacterial infection and genetic predisposition in intestinal dysplasia.
Y. Apidianakis, C. Pitsouli, N. Perrimon, and L. Rahme (2009)
PNAS 106, 20883-20888
   Abstract »    Full Text »    PDF »
Bacterial-modulated host immunity and stem cell activation for gut homeostasis.
W.-J. Lee (2009)
Genes & Dev. 23, 2260-2265
   Abstract »    Full Text »    PDF »
Basal cells as stem cells of the mouse trachea and human airway epithelium.
J. R. Rock, M. W. Onaitis, E. L. Rawlins, Y. Lu, C. P. Clark, Y. Xue, S. H. Randell, and B. L. M. Hogan (2009)
PNAS 106, 12771-12775
   Abstract »    Full Text »    PDF »
Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation.
W.-C. Lee, K. Beebe, L. Sudmeier, and C. A. Micchelli (2009)
Development 136, 2255-2264
   Abstract »    Full Text »    PDF »
EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors.
H. Jiang and B. A. Edgar (2009)
Development 136, 483-493
   Abstract »    Full Text »    PDF »
Drosophila Stem Cells Share a Common Requirement for the Histone H2B Ubiquitin Protease Scrawny.
M. Buszczak, S. Paterno, and A. C. Spradling (2009)
Science 323, 248-251
   Abstract »    Full Text »    PDF »
Stem Cells, Their Niches and the Systemic Environment: An Aging Network.
D. Drummond-Barbosa (2008)
Genetics 180, 1787-1797
   Abstract »    Full Text »    PDF »
Stem Cells and Their Niches: Integrated Units That Maintain Drosophila Tissues.
A.C. Spradling, T. Nystul, D. Lighthouse, L. Morris, D. Fox, R. Cox, T. Tootle, R. Frederick, and A. Skora (2008)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882