Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 315 (5817): 1405-1408

Copyright © 2007 by the American Association for the Advancement of Science

Dynamics of Replication-Independent Histone Turnover in Budding Yeast

Michael F. Dion,1*{dagger} Tommy Kaplan,2,3* Minkyu Kim,4 Stephen Buratowski,4 Nir Friedman,2 Oliver J. Rando1{dagger}{ddagger}

Abstract: Chromatin plays roles in processes governed by different time scales. To assay the dynamic behavior of chromatin in living cells, we used genomic tiling arrays to measure histone H3 turnover in G1-arrested Saccharomyces cerevisiae at single-nucleosome resolution over 4% of the genome, and at lower (~265 base pair) resolution over the entire genome. We find that nucleosomes at promoters are replaced more rapidly than at coding regions and that replacement rates over coding regions correlate with polymerase density. In addition, rapid histone turnover is found at known chromatin boundary elements. These results suggest that rapid histone turnover serves to functionally separate chromatin domains and prevent spread of histone states.

1 Faculty of Arts and Sciences, Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
2 School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel.
3 Department of Molecular Genetics and Biotechnology, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel.
4 Department of Biological Chemistry and Molecular Pharmacology, Harvard University, 240 Longwood Avenue, Boston, MA 02115, USA.

* These authors contributed equally to this work.

{dagger} Present address: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

{ddagger} To whom correspondence should be addressed. E-mail: Oliver.Rando{at}

Quantitative analysis of the transcription control mechanism.
C. Mao, C. R. Brown, E. Falkovskaia, S. Dong, E. Hrabeta-Robinson, L. Wenger, and H. Boeger (2014)
Mol Syst Biol 6, 431
   Abstract »    Full Text »    PDF »
Ubiquitous nucleosome crowding in the yeast genome.
R. V. Chereji and A. V. Morozov (2014)
PNAS 111, 5236-5241
   Abstract »    Full Text »    PDF »
Histone variants: dynamic punctuation in transcription.
C. M. Weber and S. Henikoff (2014)
Genes & Dev. 28, 672-682
   Abstract »    Full Text »    PDF »
Quantifying the role of steric constraints in nucleosome positioning.
H. T. Rube and J. S. Song (2014)
Nucleic Acids Res. 42, 2147-2158
   Abstract »    Full Text »    PDF »
Analysis of the mechanism of nucleosome survival during transcription.
H.-W. Chang, O. I. Kulaeva, A. K. Shaytan, M. Kibanov, K. Kuznedelov, K. V. Severinov, M. P. Kirpichnikov, D. J. Clark, and V. M. Studitsky (2014)
Nucleic Acids Res. 42, 1619-1627
   Abstract »    Full Text »    PDF »
Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo.
Y. Grimaldi, P. Ferrari, and M. Strubin (2014)
Genome Res. 24, 117-124
   Abstract »    Full Text »    PDF »
Gene promoters dictate histone occupancy within genes.
R. Perales, B. Erickson, L. Zhang, H. Kim, E. Valiquett, and D. Bentley (2013)
EMBO J. 32, 2645-2656
   Abstract »    Full Text »    PDF »
Nucleosome Dynamics as Modular Systems that Integrate DNA Damage and Repair.
C. L. Peterson and G. Almouzni (2013)
Cold Spring Harb Perspect Biol 5, a012658
   Abstract »    Full Text »    PDF »
Recombination-Induced Tag Exchange (RITE) Cassette Series to Monitor Protein Dynamics in Saccharomyces cerevisiae.
M. Terweij, T. van Welsem, S. van Deventer, K. F. Verzijlbergen, V. Menendez-Benito, D. Ontoso, P. San-Segundo, J. Neefjes, and F. van Leeuwen (2013)
g3 3, 1261-1272
   Abstract »    Full Text »    PDF »
Rap1 relocalization contributes to the chromatin-mediated gene expression profile and pace of cell senescence.
J. M. Platt, P. Ryvkin, J. J. Wanat, G. Donahue, M. D. Ricketts, S. P. Barrett, H. J. Waters, S. Song, A. Chavez, K. O. Abdallah, et al. (2013)
Genes & Dev. 27, 1406-1420
   Abstract »    Full Text »    PDF »
Long-range heterochromatin association is mediated by silencing and double-strand DNA break repair proteins.
J. G. Kirkland and R. T. Kamakaka (2013)
J. Cell Biol. 201, 809-826
   Abstract »    Full Text »    PDF »
A Histone Acetylation Switch Regulates H2A.Z Deposition by the SWR-C Remodeling Enzyme.
S. Watanabe, M. Radman-Livaja, O. J. Rando, and C. L. Peterson (2013)
Science 340, 195-199
   Abstract »    Full Text »    PDF »
Direct observation of frequency modulated transcription in single cells using light activation.
D. R. Larson, C. Fritzsch, L. Sun, X. Meng, D. S. Lawrence, and R. H. Singer (2013)
eLife Sci 2, e00750
   Abstract »    Full Text »    PDF »
Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency.
Y. W. Yang, R. A. Flynn, Y. Chen, K. Qu, B. Wan, K. C. Wang, M. Lei, and H. Y. Chang (2013)
eLife Sci 3, e02046
   Abstract »    Full Text »    PDF »
Transcription in the maintenance of centromere chromatin identity.
F. L. Chan and L. H. Wong (2012)
Nucleic Acids Res. 40, 11178-11188
   Abstract »    Full Text »    PDF »
Asymmetric Division of Drosophila Male Germline Stem Cell Shows Asymmetric Histone Distribution.
V. Tran, C. Lim, J. Xie, and X. Chen (2012)
Science 338, 679-682
   Abstract »    Full Text »    PDF »
Origins and Formation of Histone Methylation across the Human Cell Cycle.
B. M. Zee, L.-M. P. Britton, D. Wolle, D. M. Haberman, and B. A. Garcia (2012)
Mol. Cell. Biol. 32, 2503-2514
   Abstract »    Full Text »    PDF »
Tension-dependent nucleosome remodeling at the pericentromere in yeast.
J. S. Verdaasdonk, R. Gardner, A. D. Stephens, E. Yeh, and K. Bloom (2012)
Mol. Biol. Cell 23, 2560-2570
   Abstract »    Full Text »    PDF »
Single-molecule tools elucidate H2A.Z nucleosome composition.
J. Chen, A. Miller, A. L. Kirchmaier, and J. M. K. Irudayaraj (2012)
J. Cell Sci. 125, 2954-2964
   Abstract »    Full Text »    PDF »
Retrotransposon Ty1 integration targets specifically positioned asymmetric nucleosomal DNA segments in tRNA hotspots.
L. Mularoni, Y. Zhou, T. Bowen, S. Gangadharan, S. J. Wheelan, and J. D. Boeke (2012)
Genome Res. 22, 693-703
   Abstract »    Full Text »    PDF »
Chromatin and Transcription in Yeast.
O. J. Rando and F. Winston (2012)
Genetics 190, 351-387
   Abstract »    Full Text »    PDF »
Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer.
F. Valdes-Mora, J. Z. Song, A. L. Statham, D. Strbenac, M. D. Robinson, S. S. Nair, K. I. Patterson, D. J. Tremethick, C. Stirzaker, and S. J. Clark (2012)
Genome Res. 22, 307-321
   Abstract »    Full Text »    PDF »
Tripartite organization of centromeric chromatin in budding yeast.
K. Krassovsky, J. G. Henikoff, and S. Henikoff (2012)
PNAS 109, 243-248
   Abstract »    Full Text »    PDF »
Genome-wide H4 K16 acetylation by SAS-I is deposited independently of transcription and histone exchange.
F. Heise, H.-R. Chung, J. M. Weber, Z. Xu, L. Klein-Hitpass, L. M. Steinmetz, M. Vingron, and A. E. Ehrenhofer-Murray (2012)
Nucleic Acids Res. 40, 65-74
   Abstract »    Full Text »    PDF »
Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7.
L. M. Lombardi, A. Ellahi, and J. Rine (2011)
PNAS 108, E1302-E1311
   Abstract »    Full Text »    PDF »
In Vivo Role for the Chromatin-remodeling Enzyme SWI/SNF in the Removal of Promoter Nucleosomes by Disassembly Rather Than Sliding.
C. R. Brown, C. Mao, E. Falkovskaia, J. K. Law, and H. Boeger (2011)
J. Biol. Chem. 286, 40556-40565
   Abstract »    Full Text »    PDF »
Genome-wide function of H2B ubiquitylation in promoter and genic regions.
K. Batta, Z. Zhang, K. Yen, D. B. Goffman, and B. F. Pugh (2011)
Genes & Dev. 25, 2254-2265
   Abstract »    Full Text »    PDF »
Variety of genomic DNA patterns for nucleosome positioning.
I. Ioshikhes, S. Hosid, and B. F. Pugh (2011)
Genome Res. 21, 1863-1871
   Abstract »    Full Text »    PDF »
Identification of Histone Mutants That Are Defective for Transcription-Coupled Nucleosome Occupancy.
S. J. Hainer and J. A. Martens (2011)
Mol. Cell. Biol. 31, 3557-3568
   Abstract »    Full Text »    PDF »
Topoisomerase II binds nucleosome-free DNA and acts redundantly with topoisomerase I to enhance recruitment of RNA Pol II in budding yeast.
A. S. Sperling, K. S. Jeong, T. Kitada, and M. Grunstein (2011)
PNAS 108, 12693-12698
   Abstract »    Full Text »    PDF »
Identification of Noncoding Transcripts from within CENP-A Chromatin at Fission Yeast Centromeres.
E. S. Choi, A. Stralfors, A. G. Castillo, M. Durand-Dubief, K. Ekwall, and R. C. Allshire (2011)
J. Biol. Chem. 286, 23600-23607
   Abstract »    Full Text »    PDF »
Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters.
D. Tolkunov, K. A. Zawadzki, C. Singer, N. Elfving, A. V. Morozov, and J. R. Broach (2011)
Mol. Biol. Cell 22, 2106-2118
   Abstract »    Full Text »    PDF »
Nucleosome Positioning in Saccharomyces cerevisiae.
A. Jansen and K. J. Verstrepen (2011)
Microbiol. Mol. Biol. Rev. 75, 301-320
   Abstract »    Full Text »    PDF »
Stable and dynamic nucleosome states during a meiotic developmental process.
L. Zhang, H. Ma, and B. F. Pugh (2011)
Genome Res. 21, 875-884
   Abstract »    Full Text »    PDF »
A Packing Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome.
Z. Zhang, C. J. Wippo, M. Wal, E. Ward, P. Korber, and B. F. Pugh (2011)
Science 332, 977-980
   Abstract »    Full Text »    PDF »
The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4.
T. Gkikopoulos, V. Singh, K. Tsui, S. Awad, M. J. Renshaw, P. Scholfield, G. J. Barton, C. Nislow, T. U. Tanaka, and T. Owen-Hughes (2011)
EMBO J. 30, 1919-1927
   Abstract »    Full Text »    PDF »
Histone Variant H2A.Z and RNA Polymerase II Transcription Elongation.
M. S. Santisteban, M. Hang, and M. M. Smith (2011)
Mol. Cell. Biol. 31, 1848-1860
   Abstract »    Full Text »    PDF »
A polar barrier to transcription can be circumvented by remodeler-induced nucleosome translocation.
D. A. Gaykalova, V. Nagarajavel, V. A. Bondarenko, B. Bartholomew, D. J. Clark, and V. M. Studitsky (2011)
Nucleic Acids Res. 39, 3520-3528
   Abstract »    Full Text »    PDF »
Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization.
M. Radman-Livaja, G. Ruben, A. Weiner, N. Friedman, R. Kamakaka, and O. J. Rando (2011)
EMBO J. 30, 1012-1026
   Abstract »    Full Text »    PDF »
Transcription Regulation by the Noncoding RNA SRG1 Requires Spt2-Dependent Chromatin Deposition in the Wake of RNA Polymerase II.
P. Thebault, G. Boutin, W. Bhat, A. Rufiange, J. Martens, and A. Nourani (2011)
Mol. Cell. Biol. 31, 1288-1300
   Abstract »    Full Text »    PDF »
Control of Chromatin Structure by Spt6: Different Consequences in Coding and Regulatory Regions.
I. Ivanovska, P.-E. Jacques, O. J. Rando, F. Robert, and F. Winston (2011)
Mol. Cell. Biol. 31, 531-541
   Abstract »    Full Text »    PDF »
Elimination of a specific histone H3K14 acetyltransferase complex bypasses the RNAi pathway to regulate pericentric heterochromatin functions.
B. D. Reddy, Y. Wang, L. Niu, E. C. Higuchi, S. B. Marguerat, J. Bahler, G. R. Smith, and S. Jia (2011)
Genes & Dev. 25, 214-219
   Abstract »    Full Text »    PDF »
Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange.
Y. Katan-Khaykovich and K. Struhl (2011)
PNAS 108, 1296-1301
   Abstract »    Full Text »    PDF »
Differential effects of chromatin regulators and transcription factors on gene regulation: a nucleosomal perspective.
D. Dong, X. Shao, and Z. Zhang (2011)
Bioinformatics 27, 147-152
   Abstract »    Full Text »    PDF »
Overlapping Regulation of CenH3 Localization and Histone H3 Turnover by CAF-1 and HIR Proteins in Saccharomyces cerevisiae.
J. L. d. Rosa, J. Holik, E. M. Green, O. J. Rando, and P. D. Kaufman (2011)
Genetics 187, 9-19
   Abstract »    Full Text »    PDF »
H2A.Z (Htz1) Controls the Cell-Cycle-Dependent Establishment of Transcriptional Silencing at Saccharomyces cerevisiae Telomeres.
K. Martins-Taylor, U. Sharma, T. Rozario, and S. G. Holmes (2011)
Genetics 187, 89-104
   Abstract »    Full Text »    PDF »
Nucleosome-mediated cooperativity between transcription factors.
L. A. Mirny (2010)
PNAS 107, 22534-22539
   Abstract »    Full Text »    PDF »
Individual Lysine Acetylations on the N Terminus of Saccharomyces cerevisiae H2A.Z Are Highly but Not Differentially Regulated.
M. Mehta, H. Braberg, S. Wang, A. Lozsa, M. Shales, A. Solache, N. J. Krogan, and M.-C. Keogh (2010)
J. Biol. Chem. 285, 39855-39865
   Abstract »    Full Text »    PDF »
Chromatin-dependent binding of the S. cerevisiae HMGB protein Nhp6A affects nucleosome dynamics and transcription.
N. L. Dowell, A. S. Sperling, M. J. Mason, and R. C. Johnson (2010)
Genes & Dev. 24, 2031-2042
   Abstract »    Full Text »    PDF »
RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones.
O. I. Kulaeva, F.-K. Hsieh, and V. M. Studitsky (2010)
PNAS 107, 11325-11330
   Abstract »    Full Text »    PDF »
Genome-Wide Kinetics of Nucleosome Turnover Determined by Metabolic Labeling of Histones.
R. B. Deal, J. G. Henikoff, and S. Henikoff (2010)
Science 328, 1161-1164
   Abstract »    Full Text »    PDF »
Dominant Role for Signal Transduction in the Transcriptional Memory of Yeast GAL Genes.
S. Kundu and C. L. Peterson (2010)
Mol. Cell. Biol. 30, 2330-2340
   Abstract »    Full Text »    PDF »
Acetylation of H3 K56 Is Required for RNA Polymerase II Transcript Elongation through Heterochromatin in Yeast.
S. Varv, K. Kristjuhan, K. Peil, M. Looke, T. Mahlakoiv, K. Paapsi, and A. Kristjuhan (2010)
Mol. Cell. Biol. 30, 1467-1477
   Abstract »    Full Text »    PDF »
Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading.
H. K. MacAlpine, R. Gordan, S. K. Powell, A. J. Hartemink, and D. M. MacAlpine (2010)
Genome Res. 20, 201-211
   Abstract »    Full Text »    PDF »
Recombination-induced tag exchange to track old and new proteins.
K. F. Verzijlbergen, V. Menendez-Benito, T. van Welsem, S. J. van Deventer, D. L. Lindstrom, H. Ovaa, J. Neefjes, D. E. Gottschling, and F. van Leeuwen (2010)
PNAS 107, 64-68
   Abstract »    Full Text »    PDF »
Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling.
A. Bowman, R. Ward, H. El-Mkami, T. Owen-Hughes, and D. G. Norman (2010)
Nucleic Acids Res. 38, 695-707
   Abstract »    Full Text »    PDF »
High-resolution nucleosome mapping reveals transcription-dependent promoter packaging.
A. Weiner, A. Hughes, M. Yassour, O. J. Rando, and N. Friedman (2010)
Genome Res. 20, 90-100
   Abstract »    Full Text »    PDF »
A novel strategy of transcription regulation by intragenic nucleosome ordering.
C. Vaillant, L. Palmeira, G. Chevereau, B. Audit, Y. d'Aubenton-Carafa, C. Thermes, and A. Arneodo (2010)
Genome Res. 20, 59-67
   Abstract »    Full Text »    PDF »
DNA polymerase {varepsilon}, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator.
N. Dhillon, J. Raab, J. Guzzo, S. J. Szyjka, S. Gangadharan, O. M. Aparicio, B. Andrews, and R. T. Kamakaka (2009)
EMBO J. 28, 2583-2600
   Abstract »    Full Text »    PDF »
An Rtt109-Independent Role for Vps75 in Transcription-Associated Nucleosome Dynamics.
L. A. Selth, Y. Lorch, M. T. Ocampo-Hafalla, R. Mitter, M. Shales, N. J. Krogan, R. D. Kornberg, and J. Q. Svejstrup (2009)
Mol. Cell. Biol. 29, 4220-4234
   Abstract »    Full Text »    PDF »
SWI/SNF and Asf1p Cooperate To Displace Histones during Induction of the Saccharomyces cerevisiae HO Promoter.
T. Gkikopoulos, K. M. Havas, H. Dewar, and T. Owen-Hughes (2009)
Mol. Cell. Biol. 29, 4057-4066
   Abstract »    Full Text »    PDF »
Epigenetics of human T cells during the G0->G1 transition.
A. E. Smith, C. Chronis, M. Christodoulakis, S. J. Orr, N. C. Lea, N. A. Twine, A. Bhinge, G. J. Mufti, and N. S. B. Thomas (2009)
Genome Res. 19, 1325-1337
   Abstract »    Full Text »    PDF »
Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells.
J. V. Tjeertes, K. M. Miller, and S. P. Jackson (2009)
EMBO J. 28, 1878-1889
   Abstract »    Full Text »    PDF »
Gene dates, parties and galas: Symposium on Chromatin Dynamics and Higher Order Organization.
H. Y. Chang, O. Cuvier, and J. Dekker (2009)
EMBO Rep. 10, 689-693
   Full Text »    PDF »
Differential Cofactor Requirements for Histone Eviction from Two Nucleosomes at the Yeast PHO84 Promoter Are Determined by Intrinsic Nucleosome Stability.
C. J. Wippo, B. S. Krstulovic, F. Ertel, S. Musladin, D. Blaschke, S. Sturzl, G.-C. Yuan, W. Horz, P. Korber, and S. Barbaric (2009)
Mol. Cell. Biol. 29, 2960-2981
   Abstract »    Full Text »    PDF »
Genome-wide profiling of salt fractions maps physical properties of chromatin.
S. Henikoff, J. G. Henikoff, A. Sakai, G. B. Loeb, and K. Ahmad (2009)
Genome Res. 19, 460-469
   Abstract »    Full Text »    PDF »
The Rtt106 Histone Chaperone Is Functionally Linked to Transcription Elongation and Is Involved in the Regulation of Spurious Transcription from Cryptic Promoters in Yeast.
D. Imbeault, L. Gamar, A. Rufiange, E. Paquet, and A. Nourani (2008)
J. Biol. Chem. 283, 27350-27354
   Abstract »    Full Text »    PDF »
Regulation of TATA-binding protein dynamics in living yeast cells.
R. O. Sprouse, T. S. Karpova, F. Mueller, A. Dasgupta, J. G. McNally, and D. T. Auble (2008)
PNAS 105, 13304-13308
   Abstract »    Full Text »    PDF »
Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome.
F. J. van Werven, H. van Bakel, H. A.A.M. van Teeffelen, A.F. M. Altelaar, M. G. Koerkamp, A. J.R. Heck, F. C.P. Holstege, and H.Th. M. Timmers (2008)
Genes & Dev. 22, 2359-2369
   Abstract »    Full Text »    PDF »
Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation.
S. K. Williams, D. Truong, and J. K. Tyler (2008)
PNAS 105, 9000-9005
   Abstract »    Full Text »    PDF »
Two strategies for gene regulation by promoter nucleosomes.
I. Tirosh and N. Barkai (2008)
Genome Res. 18, 1084-1091
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae Yta7 Regulates Histone Gene Expression.
A. Gradolatto, R. S. Rogers, H. Lavender, S. D. Taverna, C. D. Allis, J. D. Aitchison, and A. J. Tackett (2008)
Genetics 179, 291-304
   Abstract »    Full Text »    PDF »
Altered Dosage and Mislocalization of Histone H3 and Cse4p Lead to Chromosome Loss in Saccharomyces cerevisiae.
W.-C. Au, M. J. Crisp, S. Z. DeLuca, O. J. Rando, and M. A. Basrai (2008)
Genetics 179, 263-275
   Abstract »    Full Text »    PDF »
Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification.
H. van Bakel, F. J. van Werven, M. Radonjic, M. O. Brok, D. van Leenen, F. C. P. Holstege, and H. T. M. Timmers (2008)
Nucleic Acids Res. 36, e21
   Abstract »    Full Text »    PDF »
RSC regulates nucleosome positioning at Pol II genes and density at Pol III genes.
T. J. Parnell, J. T. Huff, and B. R. Cairns (2008)
EMBO J. 27, 100-110
   Abstract »    Full Text »    PDF »
Histone chaperones regulate histone exchange during transcription.
H.-J. Kim, J.-H. Seol, J.-W. Han, H.-D. Youn, and E.-J. Cho (2007)
EMBO J. 26, 4467-4474
   Abstract »    Full Text »    PDF »
Structure, dynamics, and evolution of centromeric nucleosomes.
Y. Dalal, T. Furuyama, D. Vermaak, and S. Henikoff (2007)
PNAS 104, 15974-15981
   Abstract »    Full Text »    PDF »
Centromere identity is specified by a single centromeric nucleosome in budding yeast.
S. Furuyama and S. Biggins (2007)
PNAS 104, 14706-14711
   Abstract »    Full Text »    PDF »
Oliver Rando: Taking chromatin analysis to the genomic scale.
R. Williams (2007)
J. Cell Biol. 177, 948-949
   Abstract »    Full Text »    PDF »
Histone Replacement Marks the Boundaries of cis-Regulatory Domains.
Y. Mito, J. G. Henikoff, and S. Henikoff (2007)
Science 315, 1408-1411
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882