Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 315 (5820): 1817-1822

Copyright © 2007 by the American Association for the Advancement of Science

Computational Design of Peptides That Target Transmembrane Helices

Hang Yin,1* Joanna S. Slusky,1* Bryan W. Berger,1 Robin S. Walters,1 Gaston Vilaire,2 Rustem I. Litvinov,3 James D. Lear,1 Gregory A. Caputo,1 Joel S. Bennett,2 William F. DeGrado1,4{dagger}

Abstract: A variety of methods exist for the design or selection of antibodies and other proteins that recognize the water-soluble regions of proteins; however, companion methods for targeting transmembrane (TM) regions are not available. Here, we describe a method for the computational design of peptides that target TM helices in a sequence-specific manner. To illustrate the method, peptides were designed that specifically recognize the TM helices of two closely related integrins ({alpha}IIbß3 and {alpha}vß3) in micelles, bacterial membranes, and mammalian cells. These data show that sequence-specific recognition of helices in TM proteins can be achieved through optimization of the geometric complementarity of the target-host complex.

1 Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
2 Hematology-Oncology Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
3 Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
4 Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: wdegrado{at}

De novo selection of oncogenes.
K. M. Chacon, L. M. Petti, E. H. Scheideman, V. Pirazzoli, K. Politi, and D. DiMaio (2014)
PNAS 111, E6-E14
   Abstract »    Full Text »    PDF »
Hepatitis C Virus RNA Replication and Virus Particle Assembly Require Specific Dimerization of the NS4A Protein Transmembrane Domain.
A. Kohlway, N. Pirakitikulr, F. N. Barrera, O. Potapova, D. M. Engelman, A. M. Pyle, and B. D. Lindenbach (2014)
J. Virol. 88, 628-642
   Abstract »    Full Text »    PDF »
Molecular Mechanisms, Thermodynamics, and Dissociation Kinetics of Knob-Hole Interactions in Fibrin.
O. Kononova, R. I. Litvinov, A. Zhmurov, A. Alekseenko, C. H. Cheng, S. Agarwal, K. A. Marx, J. W. Weisel, and V. Barsegov (2013)
J. Biol. Chem. 288, 22681-22692
   Abstract »    Full Text »    PDF »
Protein engineering methods applied to membrane protein targets.
M. W. Lluis, J. I. Godfroy III, and H. Yin (2013)
Protein Eng. Des. Sel. 26, 91-100
   Abstract »    Full Text »    PDF »
Naturally evolved G protein-coupled receptors adopt metastable conformations.
K.-Y. M. Chen, F. Zhou, B. G. Fryszczyn, and P. Barth (2012)
PNAS 109, 13284-13289
   Abstract »    Full Text »    PDF »
Talin activates integrins by altering the topology of the {beta} transmembrane domain.
C. Kim, F. Ye, X. Hu, and M. H. Ginsberg (2012)
J. Cell Biol. 197, 605-611
   Abstract »    Full Text »    PDF »
Reconstruction of integrin activation.
F. Ye, C. Kim, and M. H. Ginsberg (2012)
Blood 119, 26-33
   Abstract »    Full Text »    PDF »
Structural plasticity of a transmembrane peptide allows self-assembly into biologically active nanoparticles.
S. G. Tarasov, V. Gaponenko, O. M. Z. Howard, Y. Chen, J. J. Oppenheim, M. A. Dyba, S. Subramaniam, Y. Lee, C. Michejda, and N. I. Tarasova (2011)
PNAS 108, 9798-9803
   Abstract »    Full Text »    PDF »
Transmembrane orientation and possible role of the fusogenic peptide from parainfluenza virus 5 (PIV5) in promoting fusion.
J. E. Donald, Y. Zhang, G. Fiorin, V. Carnevale, D. R. Slochower, F. Gai, M. L. Klein, and W. F. DeGrado (2011)
PNAS 108, 3958-3963
   Abstract »    Full Text »    PDF »
TMPad: an integrated structural database for helix-packing folds in transmembrane proteins.
A. Lo, C.-W. Cheng, Y.-Y. Chiu, T.-Y. Sung, and W.-L. Hsu (2011)
Nucleic Acids Res. 39, D347-D355
   Abstract »    Full Text »    PDF »
Consensus motif for integrin transmembrane helix association.
B. W. Berger, D. W. Kulp, L. M. Span, J. L. DeGrado, P. C. Billings, A. Senes, J. S. Bennett, and W. F. DeGrado (2010)
PNAS 107, 703-708
   Abstract »    Full Text »    PDF »
PepX: a structural database of non-redundant protein-peptide complexes.
P. Vanhee, J. Reumers, F. Stricher, L. Baeten, L. Serrano, J. Schymkowitz, and F. Rousseau (2010)
Nucleic Acids Res. 38, D545-D551
   Abstract »    Full Text »    PDF »
The Single Transmembrane Domains of Human Receptor Tyrosine Kinases Encode Self-Interactions.
C. Finger, C. Escher, and D. Schneider (2009)
Science Signaling 2, ra56
   Abstract »    Full Text »    PDF »
Incorporating receptor flexibility in the molecular design of protein interfaces.
L. Li, S. Liang, M. M. Pilcher, and S. O. Meroueh (2009)
Protein Eng. Des. Sel. 22, 575-586
   Abstract »    Full Text »    PDF »
Dimerization of Kit-ligand and efficient cell-surface presentation requires a conserved Ser-Gly-Gly-Tyr motif in its transmembrane domain.
F. Paulhe, M. Wehrle-Haller, M.-C. Jacquier, B. A. Imhof, S. Tabone-Eglinger, and B. Wehrle-Haller (2009)
FASEB J 23, 3037-3048
   Abstract »    Full Text »    PDF »
Peptides modulating conformational changes in secreted chaperones: From in silico design to preclinical proof of concept.
Y. Kliger, O. Levy, A. Oren, H. Ashkenazy, Z. Tiran, A. Novik, A. Rosenberg, A. Amir, A. Wool, A. Toporik, et al. (2009)
PNAS 106, 13797-13801
   Abstract »    Full Text »    PDF »
Designed {beta}-Boomerang Antiendotoxic and Antimicrobial Peptides: STRUCTURES AND ACTIVITIES IN LIPOPOLYSACCHARIDE.
A. Bhunia, H. Mohanram, P. N. Domadia, J. Torres, and S. Bhattacharjya (2009)
J. Biol. Chem. 284, 21991-22004
   Abstract »    Full Text »    PDF »
Challenges in the computational design of proteins.
M. Suarez and A. Jaramillo (2009)
J R Soc Interface 6, S477-S491
   Abstract »    Full Text »    PDF »
Interactions of platelet integrin {alpha}IIb and {beta}3 transmembrane domains in mammalian cell membranes and their role in integrin activation.
C. Kim, T.-L. Lau, T. S. Ulmer, and M. H. Ginsberg (2009)
Blood 113, 4747-4753
   Abstract »    Full Text »    PDF »
Predicting helix-helix interactions from residue contacts in membrane proteins.
A. Lo, Y.-Y. Chiu, E. A. Rodland, P.-C. Lyu, T.-Y. Sung, and W.-L. Hsu (2009)
Bioinformatics 25, 996-1003
   Abstract »    Full Text »    PDF »
Small-molecule inhibitors of integrin {alpha}2{beta}1 that prevent pathological thrombus formation via an allosteric mechanism.
M. W. Miller, S. Basra, D. W. Kulp, P. C. Billings, S. Choi, M. P. Beavers, O. J. T. McCarty, Z. Zou, M. L. Kahn, J. S. Bennett, et al. (2009)
PNAS 106, 719-724
   Abstract »    Full Text »    PDF »
Spatial Structure of the Dimeric Transmembrane Domain of the Growth Factor Receptor ErbB2 Presumably Corresponding to the Receptor Active State.
E. V. Bocharov, K. S. Mineev, P. E. Volynsky, Y. S. Ermolyuk, E. N. Tkach, A. G. Sobol, V. V. Chupin, M. P. Kirpichnikov, R. G. Efremov, and A. S. Arseniev (2008)
J. Biol. Chem. 283, 6950-6956
   Abstract »    Full Text »    PDF »
Transmembrane Domain Interactions Control Biological Functions of Neuropilin-1.
L. Roth, C. Nasarre, S. Dirrig-Grosch, D. Aunis, G. Cremel, P. Hubert, and D. Bagnard (2008)
Mol. Biol. Cell 19, 646-654
   Abstract »    Full Text »    PDF »
Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions.
I. C. Dews and K. R. MacKenzie (2007)
PNAS 104, 20782-20787
   Abstract »    Full Text »    PDF »
High-resolution design of a protein loop.
X. Hu, H. Wang, H. Ke, and B. Kuhlman (2007)
PNAS 104, 17668-17673
   Abstract »    Full Text »    PDF »
Toward high-resolution prediction and design of transmembrane helical protein structures.
P. Barth, J. Schonbrun, and D. Baker (2007)
PNAS 104, 15682-15687
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882