Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 316 (5822): 285-288

Copyright © 2007 by the American Association for the Advancement of Science

Lymphotoxin ß Receptor–Dependent Control of Lipid Homeostasis

James C. Lo,1* Yugang Wang,2* Alexei V. Tumanov,2* Michelle Bamji,3 Zemin Yao,3 Catherine A. Reardon,2 Godfrey S. Getz,2{dagger} Yang-Xin Fu1,2{dagger}

Abstract: Hyperlipidemia, one of the most important risk factors for coronary heart disease, is often associated with inflammation. We identified lymphotoxin (LT) and LIGHT, tumor necrosis factor cytokine family members that are primarily expressed on lymphocytes, as critical regulators of key enzymes that control lipid metabolism. Dysregulation of LIGHT expression on T cells resulted in hypertriglyceridemia and hypercholesterolemia. In low-density lipoprotein receptor–deficient mice, which lack the ability to control lipid levels in the blood, inhibition of LT and LIGHT signaling with a soluble lymphotoxin ß receptor decoy protein attenuated the dyslipidemia. These results suggest that the immune system directly influences lipid metabolism and that LT modulating agents may represent a novel therapeutic route for the treatment of dyslipidemia.

1 Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.
2 Department of Pathology, University of Chicago, Chicago, IL 60637, USA.
3 Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, Ontario K1H 8M5, Canada.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: yfu{at}uchicago.edu (Y.-X.F.); getz{at}bsd.uchicago.edu (G.S.G.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Linking the microbiota and metabolic disease with lymphotoxin.
V. Upadhyay and Y.-X. Fu (2013)
Int. Immunol. 25, 397-403
   Abstract »    Full Text »    PDF »
Lymphotoxin {beta} receptor mediates caspase-dependent tumor cell apoptosis in vitro and tumor suppression in vivo despite induction of NF-{kappa}B activation.
X. Hu, M. A. Zimmerman, K. Bardhan, D. Yang, J. L. Waller, G. B. Liles, J. R. Lee, R. Pollock, D. Lev, C. F. Ware, et al. (2013)
Carcinogenesis 34, 1105-1114
   Full Text »    PDF »
A Stimulation-Dependent Alternate Core Promoter Links Lymphotoxin {alpha} Expression with TGF-{beta}1 and Fibroblast Growth Factor-7 Signaling in Primary Human T Cells.
B. H. Yokley, S. T. Selby, and P. E. Posch (2013)
J. Immunol. 190, 4573-4584
   Abstract »    Full Text »    PDF »
Proinflammatory effects of malondialdehyde in lymphocytes.
S. Raghavan, G. Subramaniyam, and N. Shanmugam (2012)
J. Leukoc. Biol. 92, 1055-1067
   Abstract »    Full Text »    PDF »
The tryptophan metabolite 3-hydroxyanthranilic acid lowers plasma lipids and decreases atherosclerosis in hypercholesterolaemic mice.
L. Zhang, O. Ovchinnikova, A. Jonsson, A. M. Lundberg, M. Berg, G. K. Hansson, and D. F. J. Ketelhuth (2012)
Eur. Heart J. 33, 2025-2034
   Abstract »    Full Text »    PDF »
Lymphotoxin-{alpha} 252 A>G Polymorphism: A Link Between Disease Susceptibility and Dyslipidemia in Rheumatoid Arthritis?.
M. J. SANTOS, D. FERNANDES, J. CAETANO-LOPES, I. P. PERPETUO, B. VIDAL, H. CANHAO, and J. E. FONSECA (2011)
J Rheumatol 38, 1244-1249
   Abstract »    Full Text »    PDF »
TNF Receptor-1 Is Required for the Formation of Splenic Compartments during Adult, but Not Embryonic Life.
N. M. Milicevic, K. Klaperski, K. Nohroudi, Z. Milicevic, K. Bieber, B. Baraniec, M. Blessenohl, K. Kalies, C. F. Ware, and J. Westermann (2011)
J. Immunol. 186, 1486-1494
   Abstract »    Full Text »    PDF »
Enhanced Foam Cell Formation, Atherosclerotic Lesion Development, and Inflammation by Combined Deletion of ABCA1 and SR-BI in Bone Marrow-Derived Cells in LDL Receptor Knockout Mice on Western-Type Diet.
Y. Zhao, M. Pennings, R. B. Hildebrand, D. Ye, L. Calpe-Berdiel, R. Out, M. Kjerrulf, E. Hurt-Camejo, A. K. Groen, M. Hoekstra, et al. (2010)
Circ. Res. 107, e20-e31
   Abstract »    Full Text »    PDF »
Polymorphic Variants of LIGHT (TNF Superfamily-14) Alter Receptor Avidity and Bioavailability.
T. C. Cheung, K. Coppieters, H. Sanjo, L. M. Oborne, P. S. Norris, A. Coddington, S. W. Granger, D. Elewaut, and C. F. Ware (2010)
J. Immunol. 185, 1949-1958
   Abstract »    Full Text »    PDF »
Apolipoprotein A-I and Its Role in Lymphocyte Cholesterol Homeostasis and Autoimmunity.
A. J. Wilhelm, M. Zabalawi, J. M. Grayson, A. E. Weant, A. S. Major, J. Owen, M. Bharadwaj, R. Walzem, L. Chan, K. Oka, et al. (2009)
Arterioscler Thromb Vasc Biol 29, 843-849
   Abstract »    Full Text »    PDF »
VLDL best predicts aortic root atherosclerosis in LDL receptor deficient mice.
P. A. VanderLaan, C. A. Reardon, R. A. Thisted, and G. S. Getz (2009)
J. Lipid Res. 50, 376-385
   Abstract »    Full Text »    PDF »
Lymphotoxin {beta} receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE-/- mice.
R. Grabner, K. Lotzer, S. Dopping, M. Hildner, D. Radke, M. Beer, R. Spanbroek, B. Lippert, C. A. Reardon, G. S. Getz, et al. (2009)
J. Exp. Med. 206, 233-248
   Abstract »    Full Text »    PDF »
Inflammatory Interaction Between LIGHT and Proteinase-Activated Receptor-2 in Endothelial Cells: Potential Role in Atherogenesis.
W. J. Sandberg, B. Halvorsen, A. Yndestad, C. Smith, K. Otterdal, F. R. Brosstad, S. S. Froland, P. S. Olofsson, J. K. Damas, L. Gullestad, et al. (2009)
Circ. Res. 104, 60-68
   Abstract »    Full Text »    PDF »
Increased expression of LIGHT/TNFSF14 and its receptors in experimental and clinical heart failure.
C. P. Dahl, L. Gullestad, B. Fevang, A. M. Holm, L. Landro, L. E. Vinge, A. E. Fiane, W. J. Sandberg, K. Otterdal, S. S. Froland, et al. (2008)
Eur J Heart Fail 10, 352-359
   Abstract »    Full Text »    PDF »
CD137 Is Expressed in Human Atherosclerosis and Promotes Development of Plaque Inflammation in Hypercholesterolemic Mice.
P. S. Olofsson, L. A. Soderstrom, D. Wagsater, Y. Sheikine, P. Ocaya, F. Lang, C. Rabu, L. Chen, M. Rudling, P. Aukrust, et al. (2008)
Circulation 117, 1292-1301
   Abstract »    Full Text »    PDF »
Combined Deletion of Macrophage ABCA1 and ABCG1 Leads to Massive Lipid Accumulation in Tissue Macrophages and Distinct Atherosclerosis at Relatively Low Plasma Cholesterol Levels.
R. Out, M. Hoekstra, K. Habets, I. Meurs, V. de Waard, R. B. Hildebrand, Y. Wang, G. Chimini, J. Kuiper, T. J.C. Van Berkel, et al. (2008)
Arterioscler Thromb Vasc Biol 28, 258-264
   Abstract »    Full Text »    PDF »
Lymphotoxin-{beta} regulates periderm differentiation during embryonic skin development.
C.-Y. Cui, M. Kunisada, D. Esibizione, S. I. Grivennikov, Y. Piao, S. A. Nedospasov, and D. Schlessinger (2007)
Hum. Mol. Genet. 16, 2583-2590
   Abstract »    Full Text »    PDF »
Immunity raises cholesterol.
N. LeBrasseur (2007)
J. Cell Biol. 177, 373a
   Full Text »    PDF »
MEDICINE: LIGHT Hits the Liver.
G. K. Hansson (2007)
Science 316, 206-207
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882