Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 316 (5823): 402-404

Copyright © 2007 by the American Association for the Advancement of Science

Male and Female Drosophila Germline Stem Cells: Two Versions of Immortality

Margaret T. Fuller1, and Allan C. Spradling2

Abstract: Drosophila male and female germline stem cells (GSCs) are sustained by niches and regulatory pathways whose common principles serve as models for understanding mammalian stem cells. Despite striking cellular and genetic similarities that suggest a common evolutionary origin, however, male and female GSCs also display important differences. Comparing these two stem cells and their niches in detail is likely to reveal how a common heritage has been adapted to the differing requirements of male and female gamete production.

1 Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
2 Department of Embryology and Howard Hughes Medical Institute (HHMI), Carnegie Institution of Washington, Baltimore, MD 21218, USA.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Drosophila epigenome reorganization during oocyte differentiation and early embryogenesis.
N. Iovino (2014)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Centrosome-dependent asymmetric inheritance of the midbody ring in Drosophila germline stem cell division.
V. Salzmann, C. Chen, C.- Y. A. Chiang, A. Tiyaboonchai, M. Mayer, and Y. M. Yamashita (2014)
Mol. Biol. Cell 25, 267-275
   Abstract »    Full Text »    PDF »
Nutritional regulation of stem and progenitor cells in Drosophila.
J. Shim, S. Gururaja-Rao, and U. Banerjee (2013)
Development 140, 4647-4656
   Abstract »    Full Text »    PDF »
The asymmetric segregation of damaged proteins is stem cell-type dependent.
M. R. Bufalino, B. DeVeale, and D. van der Kooy (2013)
J. Cell Biol. 201, 523-530
   Abstract »    Full Text »    PDF »
Asymmetric Division of Drosophila Male Germline Stem Cell Shows Asymmetric Histone Distribution.
V. Tran, C. Lim, J. Xie, and X. Chen (2012)
Science 338, 679-682
   Abstract »    Full Text »    PDF »
Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis.
S. Yoshida (2012)
Reproduction 144, 293-302
   Abstract »    Full Text »    PDF »
Multi-scale computational modeling of developmental biology.
Y. Setty (2012)
Bioinformatics 28, 2022-2028
   Abstract »    Full Text »    PDF »
Hh signalling is essential for somatic stem cell maintenance in the Drosophila testis niche.
M. Michel, A. P. Kupinski, I. Raabe, and C. Bokel (2012)
Development 139, 2663-2669
   Abstract »    Full Text »    PDF »
Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling.
Y. Li, J. Z. Maines, O. Y. Tastan, D. M. McKearin, and M. Buszczak (2012)
Development 139, 1547-1556
   Abstract »    Full Text »    PDF »
Enhancing the Potential of Cardiac Progenitor Cells: Pushing Forward With Pim-1.
D. P. Del Re and J. Sadoshima (2012)
Circ. Res. 110, 1154-1156
   Full Text »    PDF »
Centrosome misorientation mediates slowing of the cell cycle under limited nutrient conditions in Drosophila male germline stem cells.
T. M. Roth, C.- Y. A. Chiang, M. Inaba, H. Yuan, V. Salzmann, C. E. Roth, and Y. M. Yamashita (2012)
Mol. Biol. Cell 23, 1524-1532
   Abstract »    Full Text »    PDF »
GPI-anchor synthesis is indispensable for the germline development of the nematode Caenorhabditis elegans.
D. Murata, K. H. Nomura, K. Dejima, S. Mizuguchi, N. Kawasaki, Y. Matsuishi-Nakajima, S. Ito, K. Gengyo-Ando, E. Kage-Nakadai, S. Mitani, et al. (2012)
Mol. Biol. Cell 23, 982-995
   Abstract »    Full Text »    PDF »
Loss-of-Function Screen Reveals Novel Regulators Required for Drosophila Germline Stem Cell Self-Renewal.
Y. Xing, I. Kurtz, M. Thuparani, J. Legard, and H. Ruohola-Baker (2012)
g3 2, 343-351
   Abstract »    Full Text »    PDF »
A model of stem cell population dynamics: in silico analysis and in vivo validation.
Y. Setty, D. Dalfo, D. Z. Korta, E. J. A. Hubbard, and H. Kugler (2012)
Development 139, 47-56
   Abstract »    Full Text »    PDF »
Regulation of cell growth by Notch signaling and its differential requirement in normal vs. tumor-forming stem cells in Drosophila.
Y. Song and B. Lu (2011)
Genes & Dev. 25, 2644-2658
   Abstract »    Full Text »    PDF »
Germline Stem Cells.
A. Spradling, M. T. Fuller, R. E. Braun, and S. Yoshida (2011)
Cold Spring Harb Perspect Biol 3, a002642
   Abstract »    Full Text »    PDF »
Generation of Spatial Patterns Through Cell Polarity Switching.
S. Robinson, P. Barbier de Reuille, J. Chan, D. Bergmann, P. Prusinkiewicz, and E. Coen (2011)
Science 333, 1436-1440
   Abstract »    Full Text »    PDF »
no child left behind encodes a novel chromatin factor required for germline stem cell maintenance in males but not females.
A. L. Casper, K. Baxter, and M. Van Doren (2011)
Development 138, 3357-3366
   Abstract »    Full Text »    PDF »
Live imaging of the Drosophila spermatogonial stem cell niche reveals novel mechanisms regulating germline stem cell output.
X. R. Sheng and E. Matunis (2011)
Development 138, 3367-3376
   Abstract »    Full Text »    PDF »
The stem cell niche: lessons from the Drosophila testis.
M. de Cuevas and E. L. Matunis (2011)
Development 138, 2861-2869
   Abstract »    Full Text »    PDF »
Tracking adult stem cells.
H. J. Snippert and H. Clevers (2011)
EMBO Rep. 12, 113-122
   Abstract »    Full Text »    PDF »
Stem cell ageing and non-random chromosome segregation.
G. W. Charville and T. A. Rando (2011)
Phil Trans R Soc B 366, 85-93
   Abstract »    Full Text »    PDF »
Intrinsic and extrinsic mechanisms of oocyte loss.
T. C. Thomson, K. E. Fitzpatrick, and J. Johnson (2010)
Mol. Hum. Reprod. 16, 916-927
   Abstract »    Full Text »    PDF »
The Drosophila Female Germline Stem Cell Lineage Acts to Spatially Restrict DPP Function Within the Niche.
M. Liu, T. M. Lim, and Y. Cai (2010)
Science Signaling 3, ra57
   Abstract »    Full Text »    PDF »
Adhesion molecules in the stem cell niche - more than just staying in shape?.
V. Marthiens, I. Kazanis, L. Moss, K. Long, and C. ffrench-Constant (2010)
J. Cell Sci. 123, 1613-1622
   Abstract »    Full Text »    PDF »
Maintaining the male germline: regulation of spermatogonial stem cells.
K. Caires, J. Broady, and D. McLean (2010)
J. Endocrinol. 205, 133-145
   Abstract »    Full Text »    PDF »
Functional Hierarchy and Reversibility Within the Murine Spermatogenic Stem Cell Compartment.
T. Nakagawa, M. Sharma, Y. i. Nabeshima, R. E. Braun, and S. Yoshida (2010)
Science 328, 62-67
   Abstract »    Full Text »    PDF »
Spermatogonial stem cells in higher primates: are there differences from those in rodents?.
B. P Hermann, M. Sukhwani, M. C Hansel, and K. E Orwig (2010)
Reproduction 139, 479-493
   Abstract »    Full Text »    PDF »
Molecular mechanisms of gene regulation during Drosophila spermatogenesis.
H. White-Cooper (2010)
Reproduction 139, 11-21
   Abstract »    Full Text »    PDF »
Accumulation of a differentiation regulator specifies transit amplifying division number in an adult stem cell lineage.
M. L. Insco, A. Leon, C. H. Tam, D. M. McKearin, and M. T. Fuller (2009)
PNAS 106, 22311-22316
   Abstract »    Full Text »    PDF »
Symmetric and asymmetric mitotic segregation patterns influence Wolbachia distribution in host somatic tissue.
R. Albertson, C. Casper-Lindley, J. Cao, U. Tram, and W. Sullivan (2009)
J. Cell Sci. 122, 4570-4583
   Abstract »    Full Text »    PDF »
Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer.
R. A. Neumuller and J. A. Knoblich (2009)
Genes & Dev. 23, 2675-2699
   Abstract »    Full Text »    PDF »
Capacity for stochastic self-renewal and differentiation in mammalian spermatogonial stem cells.
Z. Wu, K. Luby-Phelps, A. Bugde, L. A. Molyneux, B. Denard, W.-H. Li, G. M. Suel, and D. L. Garbers (2009)
J. Cell Biol. 187, 513-524
   Abstract »    Full Text »    PDF »
The subependymal zone neurogenic niche: a beating heart in the centre of the brain: How plastic is adult neurogenesis? Opportunities for therapy and questions to be addressed.
I. Kazanis (2009)
Brain 132, 2909-2921
   Abstract »    Full Text »    PDF »
Procentriole elongation and recruitment of pericentriolar material are downregulated in cyst cells as they enter quiescence.
M. G. Riparbelli, G. Colozza, and G. Callaini (2009)
J. Cell Sci. 122, 3613-3618
   Abstract »    Full Text »    PDF »
JAK-STAT Signal Inhibition Regulates Competition in the Drosophila Testis Stem Cell Niche.
M. Issigonis, N. Tulina, M. de Cuevas, C. Brawley, L. Sandler, and E. Matunis (2009)
Science 326, 153-156
   Abstract »    Full Text »    PDF »
Histological and Stereological Evaluation of Zebrafish (Danio rerio) Spermatogenesis with an Emphasis on Spermatogonial Generations.
M. C. Leal, E. R. Cardoso, R. H. Nobrega, S. R. Batlouni, J. Bogerd, L. R. Franca, and R. W. Schulz (2009)
Biol Reprod 81, 177-187
   Abstract »    Full Text »    PDF »
Dicer-1-dependent Dacapo suppression acts downstream of Insulin receptor in regulating cell division of Drosophila germline stem cells.
J.-Y. Yu, S. H. Reynolds, S. D. Hatfield, H. R. Shcherbata, K. A. Fischer, E. J. Ward, D. Long, Y. Ding, and H. Ruohola-Baker (2009)
Development 136, 1497-1507
   Abstract »    Full Text »    PDF »
Sex-lethal Facilitates the Transition From Germline Stem Cell to Committed Daughter Cell in the Drosophila Ovary.
J. Chau, L. S. Kulnane, and H. K. Salz (2009)
Genetics 182, 121-132
   Abstract »    Full Text »    PDF »
Regulation of Self-renewal and Differentiation in Adult Stem Cell Lineages: Lessons from the Drosophila Male Germ Line.
E.L. Davies and M.T. Fuller (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Persistent competition among stem cells and their daughters in the Drosophila ovary germline niche.
C. Rhiner, B. Diaz, M. Portela, J. F. Poyatos, I. Fernandez-Ruiz, J. M. Lopez-Gay, O. Gerlitz, and E. Moreno (2009)
Development 136, 995-1006
   Abstract »    Full Text »    PDF »
Insulin levels control female germline stem cell maintenance via the niche in Drosophila.
H.-J. Hsu and D. Drummond-Barbosa (2009)
PNAS 106, 1117-1121
   Abstract »    Full Text »    PDF »
Novel functions of the CD34 family.
J. S. Nielsen and K. M. McNagny (2008)
J. Cell Sci. 121, 3683-3692
   Abstract »    Full Text »    PDF »
Stem Cells and Their Niches: Integrated Units That Maintain Drosophila Tissues.
A.C. Spradling, T. Nystul, D. Lighthouse, L. Morris, D. Fox, R. Cox, T. Tootle, R. Frederick, and A. Skora (2008)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Building Epithelial Tissues from Skin Stem Cells.
E. Fuchs and J.A. Nowak (2008)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Chromatin and the cell cycle meet in Madrid.
M. Dominguez and F. Berger (2008)
Development 135, 3475-3480
   Abstract »    Full Text »    PDF »
Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT.
T. Yasugi, D. Umetsu, S. Murakami, M. Sato, and T. Tabata (2008)
Development 135, 1471-1480
   Abstract »    Full Text »    PDF »
The JAK/STAT pathway positively regulates DPP signaling in the Drosophila germline stem cell niche.
L. Wang, Z. Li, and Y. Cai (2008)
J. Cell Biol. 180, 721-728
   Abstract »    Full Text »    PDF »
Skin stem cells: rising to the surface.
E. Fuchs (2008)
J. Cell Biol. 180, 273-284
   Abstract »    Full Text »    PDF »
The hematopoietic stem cell and its niche: a comparative view.
J. A. Martinez-Agosto, H. K.A. Mikkola, V. Hartenstein, and U. Banerjee (2007)
Genes & Dev. 21, 3044-3060
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882