Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 316 (5823): 406-407

Copyright © 2007 by the American Association for the Advancement of Science

The Maternal-Zygotic Transition: Death and Birth of RNAs

Alexander F. Schier

Abstract: Maternal gene products drive early development when the newly formed embryo is transcriptionally inactive. During the maternal-zygotic transition, embryonic transcription is initiated and many maternal RNAs are degraded. Multiple mechanisms regulate the birth of zygotic RNAs and the death of maternal RNAs. Genome activation appears to rely in part on the sequestration of transcriptional repressors by the exponentially increasing amount of DNA during cleavage divisions. Maternal RNA degradation is induced by the binding of proteins and microRNAs to the 3' untranslated region of target RNAs.

Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Center for Brain Science, Broad Institute, Harvard University, 16 Divinity Avenue, Room 1027, Cambridge, MA 02138, USA.

E-mail: schier{at}

Carbon source-dependent alteration of Puf3p activity mediates rapid changes in the stabilities of mRNAs involved in mitochondrial function.
M. A. Miller, J. Russo, A. D. Fischer, F. A. Lopez Leban, and W. M. Olivas (2014)
Nucleic Acids Res. 42, 3954-3970
   Abstract »    Full Text »    PDF »
Message control in developmental transitions; deciphering chromatin's role using zebrafish genomics.
L. C. Stapel and N. L. Vastenhouw (2014)
Briefings in Functional Genomics 13, 106-120
   Abstract »    Full Text »    PDF »
Canonical nucleosome organization at promoters forms during genome activation.
Y. Zhang, N. L. Vastenhouw, J. Feng, K. Fu, C. Wang, Y. Ge, A. Pauli, P. van Hummelen, A. F. Schier, and X. S. Liu (2014)
Genome Res. 24, 260-266
   Abstract »    Full Text »    PDF »
Meeting the methodological challenges in molecular mapping of the embryonic epigenome.
S. McGraw, H. A. Shojaei Saadi, and C. Robert (2013)
Mol. Hum. Reprod. 19, 809-827
   Abstract »    Full Text »    PDF »
Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis.
C. Nepal, Y. Hadzhiev, C. Previti, V. Haberle, N. Li, H. Takahashi, A. M. M. Suzuki, Y. Sheng, R. F. Abdelhamid, S. Anand, et al. (2013)
Genome Res. 23, 1938-1950
   Abstract »    Full Text »    PDF »
RNA Recognition by the Caenorhabditis elegans Oocyte Maturation Determinant OMA-1.
E. Kaymak and S. P. Ryder (2013)
J. Biol. Chem. 288, 30463-30472
   Abstract »    Full Text »    PDF »
Gene expression profiles in rice gametes and zygotes: identification of gamete-enriched genes and up- or down-regulated genes in zygotes after fertilization.
M. Abiko, H. Maeda, K. Tamura, I. Hara-Nishimura, and T. Okamoto (2013)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition.
S.-W. Shin, N. Shimizu, M. Tokoro, S. Nishikawa, Y. Hatanaka, M. Anzai, J. Hamazaki, S. Kishigami, K. Saeki, Y. Hosoi, et al. (2013)
Biology Open 2, 170-182
   Abstract »    Full Text »    PDF »
HtrA1 Is a Novel Antagonist Controlling Fibroblast Growth Factor (FGF) Signaling via Cleavage of FGF8.
G.-Y. Kim, H.-Y. Kim, H.-T. Kim, J.-M. Moon, C.-H. Kim, S. Kang, and H. Rhim (2012)
Mol. Cell. Biol. 32, 4482-4492
   Abstract »    Full Text »    PDF »
Dynamic landscape of tandem 3' UTRs during zebrafish development.
Y. Li, Y. Sun, Y. Fu, M. Li, G. Huang, C. Zhang, J. Liang, S. Huang, G. Shen, S. Yuan, et al. (2012)
Genome Res. 22, 1899-1906
   Abstract »    Full Text »    PDF »
Extensive alternative polyadenylation during zebrafish development.
I. Ulitsky, A. Shkumatava, C. H. Jan, A. O. Subtelny, D. Koppstein, G. W. Bell, H. Sive, and D. P. Bartel (2012)
Genome Res. 22, 2054-2066
   Abstract »    Full Text »    PDF »
Analysis of microRNAs and their precursors in bovine early embryonic development.
E. Mondou, I. Dufort, M. Gohin, E. Fournier, and M.- A. Sirard (2012)
Mol. Hum. Reprod. 18, 425-434
   Abstract »    Full Text »    PDF »
Transcriptome-wide analysis of small RNA expression in early zebrafish development.
C. Wei, L. Salichos, C. M. Wittgrove, A. Rokas, and J. G. Patton (2012)
RNA 18, 915-929
   Abstract »    Full Text »    PDF »
Report of the National Heart, Lung, and Blood Institute Working Group on Epigenetics and Hypertension.
A. W. Cowley Jr, J. H. Nadeau, A. Baccarelli, K. Berecek, M. Fornage, G. H. Gibbons, D. G. Harrison, M. Liang, P. W. Nathanielsz, D. T. O'Connor, et al. (2012)
Hypertension 59, 899-905
   Full Text »    PDF »
Interdomain dynamics and coactivation of the mRNA decapping enzyme Dcp2 are mediated by a gatekeeper tryptophan.
S. N. Floor, M. S. Borja, and J. D. Gross (2012)
PNAS 109, 2872-2877
   Abstract »    Full Text »    PDF »
UHRF1 phosphorylation by cyclin A2/cyclin-dependent kinase 2 is required for zebrafish embryogenesis.
J. Chu, E. A. Loughlin, N. A. Gaur, S. SenBanerjee, V. Jacob, C. Monson, B. Kent, A. Oranu, Y. Ding, C. Ukomadu, et al. (2012)
Mol. Biol. Cell 23, 59-70
   Abstract »    Full Text »    PDF »
Seasonal Effect on Germinal Vesicle-Stage Bovine Oocytes Is Further Expressed by Alterations in Transcript Levels in the Developing Embryos Associated with Reduced Developmental Competence.
M. Gendelman and Z. Roth (2012)
Biol Reprod 86, 1-9
   Abstract »    Full Text »    PDF »
Translational regulation of the cell cycle: when, where, how and why?.
I. Kronja and T. L. Orr-Weaver (2011)
Phil Trans R Soc B 366, 3638-3652
   Abstract »    Full Text »    PDF »
Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles.
J. Wang, B. Czech, A. Crunk, A. Wallace, M. Mitreva, G. J. Hannon, and R. E. Davis (2011)
Genome Res. 21, 1462-1477
   Abstract »    Full Text »    PDF »
Zebrafish mRNA sequencing deciphers novelties in transcriptome dynamics during maternal to zygotic transition.
H. Aanes, C. L. Winata, C. H. Lin, J. P. Chen, K. G. Srinivasan, S. G. P. Lee, A. Y. M. Lim, H. S. Hajan, P. Collas, G. Bourque, et al. (2011)
Genome Res. 21, 1328-1338
   Abstract »    Full Text »    PDF »
Zygotic amplification of secondary piRNAs during silkworm embryogenesis.
S. Kawaoka, Y. Arai, K. Kadota, Y. Suzuki, K. Hara, S. Sugano, K. Shimizu, Y. Tomari, T. Shimada, and S. Katsuma (2011)
RNA 17, 1401-1407
   Abstract »    Full Text »    PDF »
Taking the very first steps: from polarity to axial domains in the early Arabidopsis embryo.
S. Jeong, M. Bayer, and W. Lukowitz (2011)
J. Exp. Bot. 62, 1687-1697
   Abstract »    Full Text »    PDF »
Transcript Profiling of Individual Twin Blastomeres Derived by Splitting Two-Cell Stage Murine Embryos.
R. M. Roberts, M. Katayama, S. R. Magnuson, M. T. Falduto, and K. E. O. Torres (2011)
Biol Reprod 84, 487-494
   Abstract »    Full Text »    PDF »
Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition.
M. S. Borja, K. Piotukh, C. Freund, and J. D. Gross (2011)
RNA 17, 278-290
   Abstract »    Full Text »    PDF »
Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.
M. Gallenberger, D. M. Meinel, M. Kroeber, M. Wegner, P. Milkereit, M. R. Bosl, and E. R. Tamm (2011)
Hum. Mol. Genet. 20, 422-435
   Abstract »    Full Text »    PDF »
Xenopus germline nanos1 is translationally repressed by a novel structure-based mechanism.
X. Luo, S. Nerlick, W. An, and M. L. King (2011)
Development 138, 589-598
   Abstract »    Full Text »    PDF »
Microarray analysis of gene expression during early development: a cautionary overview.
C. Robert (2010)
Reproduction 140, 787-801
   Abstract »    Full Text »    PDF »
Maternal phosphatidylinositol 3-kinase signalling is crucial for embryonic genome activation and preimplantation embryogenesis.
W. Zheng, N. Gorre, Y. Shen, T. Noda, W. Ogawa, E. Lundin, and K. Liu (2010)
EMBO Rep. 11, 890-895
   Abstract »    Full Text »    PDF »
Extending the maternal-zygotic effect with genomic imprinting.
X. Li (2010)
Mol. Hum. Reprod. 16, 695-703
   Abstract »    Full Text »    PDF »
Cell Lineage Reconstruction of Early Zebrafish Embryos Using Label-Free Nonlinear Microscopy.
N. Olivier, M. A. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Debarre, P. Bourgine, A. Santos, et al. (2010)
Science 329, 967-971
   Abstract »    Full Text »    PDF »
Embryo and Endosperm Inherit Distinct Chromatin and Transcriptional States from the Female Gametes in Arabidopsis.
M. Pillot, C. Baroux, M. A. Vazquez, D. Autran, O. Leblanc, J. P. Vielle-Calzada, U. Grossniklaus, and D. Grimanelli (2010)
PLANT CELL 22, 307-320
   Abstract »    Full Text »    PDF »
Transgenerational genetic effects on phenotypic variation and disease risk.
J. H. Nadeau (2009)
Hum. Mol. Genet. 18, R202-R210
   Abstract »    Full Text »    PDF »
Smicl is required for phosphorylation of RNA polymerase II and affects 3'-end processing of RNA at the midblastula transition in Xenopus.
C. Collart, J. M. Ramis, T. A. Down, and J. C. Smith (2009)
Development 136, 3451-3461
   Abstract »    Full Text »    PDF »
Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects.
K.-L. Boon, S. Xiao, M. L. McWhorter, T. Donn, E. Wolf-Saxon, M. T. Bohnsack, C. B. Moens, and C. E. Beattie (2009)
Hum. Mol. Genet. 18, 3615-3625
   Abstract »    Full Text »    PDF »
A highly conserved cis-regulatory motif directs differential gonadal synexpression of Dmrt1 transcripts during gonad development.
A. Herpin, S. Nakamura, T. U. Wagner, M. Tanaka, and M. Schartl (2009)
Nucleic Acids Res. 37, 1510-1520
   Abstract »    Full Text »    PDF »
An essential role for the RNA-binding protein Smaug during the Drosophila maternal-to-zygotic transition.
B. Benoit, C. H. He, F. Zhang, S. M. Votruba, W. Tadros, J. T. Westwood, C. A. Smibert, H. D. Lipshitz, and W. E. Theurkauf (2009)
Development 136, 923-932
   Abstract »    Full Text »    PDF »
Paternal Control of Embryonic Patterning in Arabidopsis thaliana.
M. Bayer, T. Nawy, C. Giglione, M. Galli, T. Meinnel, and W. Lukowitz (2009)
Science 323, 1485-1488
   Abstract »    Full Text »    PDF »
Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis.
P. R. Boag, A. Atalay, S. Robida, V. Reinke, and T. K. Blackwell (2008)
J. Cell Biol. 182, 543-557
   Abstract »    Full Text »    PDF »
Autophagy Is Essential for Preimplantation Development of Mouse Embryos.
S. Tsukamoto, A. Kuma, M. Murakami, C. Kishi, A. Yamamoto, and N. Mizushima (2008)
Science 321, 117-120
   Abstract »    Full Text »    PDF »
Alternative splicing of the mouse embryonic poly(A) binding protein (Epab) mRNA is regulated by an exonic splicing enhancer: a model for post-transcriptional control of gene expression in the oocyte.
E. Seli, A. Yaba, O. Guzeloglu-Kayisli, and M. D. Lalioti (2008)
Mol. Hum. Reprod. 14, 393-398
   Abstract »    Full Text »    PDF »
Differential Expression of Cell Cycle Genes in Rhesus Monkey Oocytes and Embryos of Different Developmental Potentials.
N. R Mtango and K. E Latham (2008)
Biol Reprod 78, 254-266
   Abstract »    Full Text »    PDF »
The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus.
S. K. Radhakrishnan, M. Thanbichler, and P. H. Viollier (2008)
Genes & Dev. 22, 212-225
   Abstract »    Full Text »    PDF »
The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish.
M. Ferg, R. Sanges, J. Gehrig, J. Kiss, M. Bauer, A. Lovas, M. Szabo, L. Yang, U. Straehle, M. J. Pankratz, et al. (2007)
EMBO J. 26, 3945-3956
   Abstract »    Full Text »    PDF »
Regulation of the Oocyte-to-Zygote Transition.
M. L. Stitzel and G. Seydoux (2007)
Science 316, 407-408
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882