Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 316 (5824): 608-611

Copyright © 2007 by the American Association for the Advancement of Science

Requirement of bic/microRNA-155 for Normal Immune Function

Antony Rodriguez,1* Elena Vigorito,2* Simon Clare,1 Madhuri V. Warren,1,3 Philippe Couttet,1 Dalya R. Soond,2 Stijn van Dongen,1 Russell J. Grocock,1 Partha P. Das,4 Eric A. Miska,4 David Vetrie,1 Klaus Okkenhaug,2 Anton J. Enright,1 Gordon Dougan,1 Martin Turner,2{dagger} Allan Bradley1{dagger}

Abstract: MicroRNAs are a class of small RNAs that are increasingly being recognized as important regulators of gene expression. Although hundreds of microRNAs are present in the mammalian genome, genetic studies addressing their physiological roles are at an early stage. We have shown that mice deficient for bic/microRNA-155 are immunodeficient and display increased lung airway remodeling. We demonstrate a requirement of bic/microRNA-155 for the function of B and T lymphocytes and dendritic cells. Transcriptome analysis of bic/microRNA-155–deficient CD4+ T cells identified a wide spectrum of microRNA-155–regulated genes, including cytokines, chemokines, and transcription factors. Our work suggests that bic/microRNA-155 plays a key role in the homeostasis and function of the immune system.

1 The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
2 Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB2 4AT, UK.
3 Department of Pathology, Addenbroke's Hospital, University of Cambridge, Cambridge, CB2 2QQ, UK.
4 Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK.

* These authors contributed equally to this work

{dagger} To whom correspondence should be addressed: abradley{at} (A.B.); martin.turner{at} (M.T.)

miR-217 is an oncogene that enhances the germinal center reaction.
V. G. de Yebenes, N. Bartolome-Izquierdo, R. Nogales-Cadenas, P. Perez-Duran, S. M. Mur, N. Martinez, L. Di Lisio, D. F. Robbiani, A. Pascual-Montano, M. Canamero, et al. (2014)
Blood 124, 229-239
   Abstract »    Full Text »    PDF »
Regulation of gene expression by the BLM helicase correlates with the presence of G-quadruplex DNA motifs.
G. H. Nguyen, W. Tang, A. I. Robles, R. P. Beyer, L. T. Gray, J. A. Welsh, A. J. Schetter, K. Kumamoto, X. W. Wang, I. D. Hickson, et al. (2014)
PNAS 111, 9905-9910
   Abstract »    Full Text »    PDF »
Histone Modifications Are Associated with {Delta}9-Tetrahydrocannabinol-mediated Alterations in Antigen-specific T Cell Responses.
X. Yang, V. L. Hegde, R. Rao, J. Zhang, P. S. Nagarkatti, and M. Nagarkatti (2014)
J. Biol. Chem. 289, 18707-18718
   Abstract »    Full Text »    PDF »
miR-150 influences B-cell receptor signaling in chronic lymphocytic leukemia by regulating expression of GAB1 and FOXP1.
M. Mraz, L. Chen, L. Z. Rassenti, E. M. Ghia, H. Li, K. Jepsen, E. N. Smith, K. Messer, K. A. Frazer, and T. J. Kipps (2014)
Blood 124, 84-95
   Abstract »    Full Text »    PDF »
MicroRNAs: History, Biogenesis, and Their Evolving Role in Animal Development and Disease.
M. Bhaskaran and M. Mohan (2014)
Veterinary Pathology 51, 759-774
   Abstract »    Full Text »    PDF »
PD-1 deletion restores susceptibility to experimental autoimmune encephalomyelitis in miR-155-deficient mice.
J. Zhang and M. Y. Braun (2014)
Int. Immunol. 26, 407-415
   Abstract »    Full Text »    PDF »
Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis.
F.-J. Tian, L.-N. An, G.-K. Wang, J.-Q. Zhu, Q. Li, Y.-Y. Zhang, A. Zeng, J. Zou, R.-F. Zhu, X.-S. Han, et al. (2014)
Cardiovasc Res 103, 100-110
   Abstract »    Full Text »    PDF »
MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation.
M. A. Lopez-Ramirez, D. Wu, G. Pryce, J. E. Simpson, A. Reijerkerk, J. King-Robson, O. Kay, H. E. de Vries, M. C. Hirst, B. Sharrack, et al. (2014)
FASEB J 28, 2551-2565
   Abstract »    Full Text »    PDF »
Loss of MicroRNA-155 Protects the Heart From Pathological Cardiac Hypertrophy.
H. Y. Seok, J. Chen, M. Kataoka, Z.-P. Huang, J. Ding, J. Yan, X. Hu, and D.-Z. Wang (2014)
Circ. Res. 114, 1585-1595
   Abstract »    Full Text »    PDF »
miR-17-92 Cluster Targets Phosphatase and Tensin Homology and Ikaros Family Zinc Finger 4 to Promote TH17-mediated Inflammation.
S.-Q. Liu, S. Jiang, C. Li, B. Zhang, and Q.-J. Li (2014)
J. Biol. Chem. 289, 12446-12456
   Abstract »    Full Text »    PDF »
Expression Patterns of Micro-RNAs 146a, 181a, and 155 in Subacute Sclerosing Panencephalitis.
U. Yiş, U. K. Tufekci, Şermin Genc, K. B. Carman, E. Bayram, Y. Topcu, and S. H. Kurul (2014)
J Child Neurol
   Abstract »    Full Text »    PDF »
MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E-Deficient Mice.
F. Du, F. Yu, Y. Wang, Y. Hui, K. Carnevale, M. Fu, H. Lu, and D. Fan (2014)
Arterioscler Thromb Vasc Biol 34, 759-767
   Abstract »    Full Text »    PDF »
Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis.
Q. Zhou, S. Haupt, J. T. Kreuzer, A. Hammitzsch, F. Proft, C. Neumann, J. Leipe, M. Witt, H. Schulze-Koops, and A. Skapenko (2014)
Ann Rheum Dis
   Abstract »    Full Text »
Insights into multiple sclerosis provided by non-coding RNAs: meeting summary from the symposium 'Non-coding RNAs in autoimmune disorders of the central nervous system' on 5 April 2013 in Warsaw, Poland.
M. P. Mycko, H. L. Weiner, and K. W. Selmaj (2014)
Multiple Sclerosis Journal
   Abstract »    Full Text »    PDF »
The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155 (miR-155) by Lipopolysaccharide and Its Targeting by Interleukin-10.
S. R. Quinn, N. E. Mangan, B. E. Caffrey, M. P. Gantier, B. R. G. Williams, P. J. Hertzog, C. E. McCoy, and L. A. J. O'Neill (2014)
J. Biol. Chem. 289, 4316-4325
   Abstract »    Full Text »    PDF »
miR-142 orchestrates a network of actin cytoskeleton regulators during megakaryopoiesis.
E. Chapnik, N. Rivkin, A. Mildner, G. Beck, R. Pasvolsky, E. Metzl-Raz, Y. Birger, G. Amir, I. Tirosh, Z. Porat, et al. (2014)
eLife Sci 3, e01964
   Abstract »    Full Text »    PDF »
The p53 Transcription Factor Modulates Microglia Behavior through MicroRNA-Dependent Regulation of c-Maf.
W. Su, S. Hopkins, N. K. Nesser, B. Sopher, A. Silvestroni, S. Ammanuel, S. Jayadev, T. Moller, J. Weinstein, and G. A. Garden (2014)
J. Immunol. 192, 358-366
   Abstract »    Full Text »    PDF »
The Intestinal Microbiota Interferes with the microRNA Response upon Oral Listeria Infection.
C. Archambaud, O. Sismeiro, J. Toedling, G. Soubigou, C. Becavin, P. Lechat, A. Lebreton, C. Ciaudo, and P. Cossart (2013)
mBio 4, e00707-13
   Abstract »    Full Text »    PDF »
MicroRNA-155 Tunes Both the Threshold and Extent of NK Cell Activation via Targeting of Multiple Signaling Pathways.
R. P. Sullivan, L. A. Fogel, J. W. Leong, S. E. Schneider, R. Wong, R. Romee, T.-H. Thai, V. Sexl, S. J. Matkovich, G. W. Dorn II, et al. (2013)
J. Immunol. 191, 5904-5913
   Abstract »    Full Text »    PDF »
Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Faslpr mouse.
T.-H. Thai, H. C. Patterson, D.-H. Pham, K. Kis-Toth, D. A. Kaminski, and G. C. Tsokos (2013)
PNAS 110, 20194-20199
   Abstract »    Full Text »    PDF »
Identification and Characterization of FGF2-Dependent mRNA: microRNA Networks During Lens Fiber Cell Differentiation.
L. Wolf, C. S. Gao, K. Gueta, Q. Xie, T. Chevallier, N. R. Podduturi, J. Sun, I. Conte, P. S. Zelenka, R. Ashery-Padan, et al. (2013)
g3 3, 2239-2255
   Abstract »    Full Text »    PDF »
Mmu-microRNA-200a Overexpression Leads to Implantation Defect by Targeting Phosphatase and Tensin Homolog in Mouse Uterus.
L.-J. Shen, J.-L. He, D.-H. Yang, Y.-B. Ding, X.-M. Chen, Y.-Q. Geng, S.-J. Liu, X.-Q. Liu, and Y.-X. Wang (2013)
Reproductive Sciences 20, 1518-1528
   Abstract »    Full Text »    PDF »
MicroRNA-155 Drives TH17 Immune Response and Tissue Injury in Experimental Crescentic GN.
C. F. Krebs, S. Kapffer, H.-J. Paust, T. Schmidt, S. B. Bennstein, A. Peters, G. Stege, S. R. Brix, C. Meyer-Schwesinger, R.-U. Muller, et al. (2013)
J. Am. Soc. Nephrol. 24, 1955-1965
   Abstract »    Full Text »    PDF »
MicroRNAs in the Atherosclerotic Plaque.
E. Raitoharju, N. Oksala, and T. Lehtimaki (2013)
Clin. Chem. 59, 1708-1721
   Abstract »    Full Text »    PDF »
Latency Locus Complements MicroRNA 155 Deficiency In Vivo.
S.-H. Sin, Y. B. Kim, and D. P. Dittmer (2013)
J. Virol. 87, 11908-11911
   Abstract »    Full Text »    PDF »
Macrophage MicroRNA-155 Promotes Cardiac Hypertrophy and Failure.
S. Heymans, M. F. Corsten, W. Verhesen, P. Carai, R. E. W. van Leeuwen, K. Custers, T. Peters, M. Hazebroek, L. Stoger, E. Wijnands, et al. (2013)
Circulation 128, 1420-1432
   Abstract »    Full Text »    PDF »
miR-155-Deficient Bone Marrow Promotes Tumor Metastasis.
F. Yu, X. Jia, F. Du, J. Wang, Y. Wang, W. Ai, and D. Fan (2013)
Mol. Cancer Res. 11, 923-936
   Abstract »    Full Text »    PDF »
A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice.
E. Zonari, F. Pucci, M. Saini, R. Mazzieri, L. S. Politi, B. Gentner, and L. Naldini (2013)
Blood 122, 243-252
   Abstract »    Full Text »    PDF »
MicroRNA-155 Confers Encephalogenic Potential to Th17 Cells by Promoting Effector Gene Expression.
R. Hu, T. B. Huffaker, D. A. Kagele, M. C. Runtsch, E. Bake, A. A. Chaudhuri, J. L. Round, and R. M. O'Connell (2013)
J. Immunol. 190, 5972-5980
   Abstract »    Full Text »    PDF »
miR-142-3p Is Involved in CD25+ CD4 T Cell Proliferation by Targeting the Expression of Glycoprotein A Repetitions Predominant.
Q. Zhou, S. Haupt, I. Prots, K. Thummler, E. Kremmer, P. E. Lipsky, H. Schulze-Koops, and A. Skapenko (2013)
J. Immunol. 190, 6579-6588
   Abstract »    Full Text »    PDF »
Forced miR-146a expression causes autoimmune lymphoproliferative syndrome in mice via downregulation of Fas in germinal center B cells.
Q. Guo, J. Zhang, J. Li, L. Zou, J. Zhang, Z. Xie, X. Fu, S. Jiang, G. Chen, Q. Jia, et al. (2013)
Blood 121, 4875-4883
   Abstract »    Full Text »    PDF »
STAT3 Activates miR-155 in Th17 Cells and Acts in Concert to Promote Experimental Autoimmune Uveitis.
T. Escobar, C.-R. Yu, S. A. Muljo, and C. E. Egwuagu (2013)
Invest. Ophthalmol. Vis. Sci. 54, 4017-4025
   Abstract »    Full Text »    PDF »
Autoantibody Induction by DNA-Containing Immune Complexes Requires HMGB1 with the TLR2/MicroRNA-155 Pathway.
Z. Wen, L. Xu, X. Chen, W. Xu, Z. Yin, X. Gao, and S. Xiong (2013)
J. Immunol. 190, 5411-5422
   Abstract »    Full Text »    PDF »
Stage-specific regulation of natural killer cell homeostasis and response against viral infection by microRNA-155.
C. L. Zawislak, A. M. Beaulieu, G. B. Loeb, J. Karo, D. Canner, N. A. Bezman, L. L. Lanier, A. Y. Rudensky, and J. C. Sun (2013)
PNAS 110, 6967-6972
   Abstract »    Full Text »    PDF »
Overexpression of miR-155 causes expansion, arrest in terminal differentiation and functional activation of mouse natural killer cells.
R. Trotta, L. Chen, S. Costinean, S. Josyula, B. L. Mundy-Bosse, D. Ciarlariello, C. Mao, E. L. Briercheck, K. K. McConnell, A. Mishra, et al. (2013)
Blood 121, 3126-3134
   Abstract »    Full Text »    PDF »
Combined Serum CA19-9 and miR-27a-3p in Peripheral Blood Mononuclear Cells to Diagnose Pancreatic Cancer.
W.-S. Wang, L.-X. Liu, G.-P. Li, Y. Chen, C.-Y. Li, D.-Y. Jin, and X.-L. Wang (2013)
Cancer Prevention Research 6, 331-338
   Abstract »    Full Text »    PDF »
MicroRNAs and respiratory diseases.
H. Rupani, T. Sanchez-Elsner, and P. Howarth (2013)
Eur. Respir. J. 41, 695-705
   Abstract »    Full Text »    PDF »
Enhanced Susceptibility to Citrobacter rodentium Infection in MicroRNA-155-Deficient Mice.
S. Clare, V. John, A. W. Walker, J. L. Hill, C. Abreu-Goodger, C. Hale, D. Goulding, T. D. Lawley, P. Mastroeni, G. Frankel, et al. (2013)
Infect. Immun. 81, 723-732
   Abstract »    Full Text »    PDF »
What is causing my arthritis, doctor? A glimpse beyond the usual suspects in the pathogenesis of rheumatoid arthritis.
H. Pieringer and A. Studnicka-Benke (2013)
QJM 106, 219-228
   Abstract »    Full Text »    PDF »
MicroRNA miR-155 Affects Antiviral Effector and Effector Memory CD8 T Cell Differentiation.
C.-Y. Tsai, S. R. Allie, W. Zhang, and E. J. Usherwood (2013)
J. Virol. 87, 2348-2351
   Abstract »    Full Text »    PDF »
Genome-Wide Analyses of Amphioxus MicroRNAs Reveal an Immune Regulation via miR-92d Targeting C3.
R. Yang, T. Zheng, X. Cai, Y. Yu, C. Yu, L. Guo, S. Huang, W. Zhu, R. Zhu, Q. Yan, et al. (2013)
J. Immunol. 190, 1491-1500
   Abstract »    Full Text »    PDF »
T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire.
Y. Bronevetsky, A. V. Villarino, C. J. Eisley, R. Barbeau, A. J. Barczak, G. A. Heinz, E. Kremmer, V. Heissmeyer, M. T. McManus, D. J. Erle, et al. (2013)
J. Exp. Med. 210, 417-432
   Abstract »    Full Text »    PDF »
MicroRNAs in Immune Response and Macrophage Polarization.
G. Liu and E. Abraham (2013)
Arterioscler Thromb Vasc Biol 33, 170-177
   Abstract »    Full Text »    PDF »
Micro-RNA 155 Is Required for Optimal CD8+ T Cell Responses to Acute Viral and Intracellular Bacterial Challenges.
E. F. Lind, A. R. Elford, and P. S. Ohashi (2013)
J. Immunol. 190, 1210-1216
   Abstract »    Full Text »    PDF »
Potential Function of miRNAs in Herpetic Stromal Keratitis.
S. Mulik, S. Bhela, and B. T. Rouse (2013)
Invest. Ophthalmol. Vis. Sci. 54, 563-573
   Abstract »    Full Text »    PDF »
In Vitro Sensitivity of CLL Cells to Fludarabine May Be Modulated by the Stimulation of Toll-like Receptors.
E. Fonte, B. Apollonio, L. Scarfo, P. Ranghetti, C. Fazi, P. Ghia, F. Caligaris-Cappio, and M. Muzio (2013)
Clin. Cancer Res. 19, 367-379
   Abstract »    Full Text »    PDF »
Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing.
L. N. Schulte, A. J. Westermann, and J. Vogel (2013)
Nucleic Acids Res. 41, 542-553
   Abstract »    Full Text »    PDF »
BCL6 positively regulates AID and germinal center gene expression via repression of miR-155.
K. Basso, C. Schneider, Q. Shen, A. B. Holmes, M. Setty, C. Leslie, and R. Dalla-Favera (2012)
J. Exp. Med. 209, 2455-2465
   Abstract »    Full Text »    PDF »
miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the E{micro}-miR-155 transgenic mouse model.
S. K. Sandhu, S. Volinia, S. Costinean, M. Galasso, R. Neinast, R. Santhanam, M. R. Parthun, D. Perrotti, G. Marcucci, R. Garzon, et al. (2012)
PNAS 109, 20047-20052
   Abstract »    Full Text »    PDF »
Essential Role of MicroRNA-155 in Regulating Endothelium-Dependent Vasorelaxation by Targeting Endothelial Nitric Oxide Synthase.
H.-X. Sun, D.-Y. Zeng, R.-T. Li, R.-P. Pang, H. Yang, Y.-L. Hu, Q. Zhang, Y. Jiang, L.-Y. Huang, Y.-B. Tang, et al. (2012)
Hypertension 60, 1407-1414
   Abstract »    Full Text »    PDF »
Inhibition of PI3K Signaling Spurs New Therapeutic Opportunities in Inflammatory/Autoimmune Diseases and Hematological Malignancies.
J. G. Foster, M. D. Blunt, E. Carter, and S. G. Ward (2012)
Pharmacol. Rev. 64, 1027-1054
   Abstract »    Full Text »    PDF »
Expression, Circulation, and Excretion Profile of MicroRNA-21, -155, and -18a Following Acute Kidney Injury.
J. Saikumar, D. Hoffmann, T.-M. Kim, V. R. Gonzalez, Q. Zhang, P. L. Goering, R. P. Brown, V. Bijol, P. J. Park, S. S. Waikar, et al. (2012)
Toxicol. Sci. 129, 256-267
   Abstract »    Full Text »    PDF »
miR-146a controls the resolution of T cell responses in mice.
L. Yang, M. P. Boldin, Y. Yu, C. S. Liu, C.-K. Ea, P. Ramakrishnan, K. D. Taganov, J. L. Zhao, and D. Baltimore (2012)
J. Exp. Med. 209, 1655-1670
   Abstract »    Full Text »    PDF »
Decreased microRNA-155 Expression in Ocular Behcet's Disease but Not in Vogt Koyanagi Harada Syndrome.
Q. Zhou, X. Xiao, C. Wang, X. Zhang, F. Li, Y. Zhou, A. Kijlstra, and P. Yang (2012)
Invest. Ophthalmol. Vis. Sci. 53, 5665-5674
   Abstract »    Full Text »    PDF »
Knocking Out Viral Myocarditis: Reality or a MiRage?.
X. Sun and M. W. Feinberg (2012)
Circ. Res. 111, 388-391
   Full Text »    PDF »
MicroRNA Profiling Identifies MicroRNA-155 as an Adverse Mediator of Cardiac Injury and Dysfunction During Acute Viral Myocarditis.
M. F. Corsten, A. Papageorgiou, W. Verhesen, P. Carai, M. Lindow, S. Obad, G. Summer, S. L. M. Coort, M. Hazebroek, R. van Leeuwen, et al. (2012)
Circ. Res. 111, 415-425
   Abstract »    Full Text »    PDF »
Identification of Resting and Type I IFN-Activated Human NK Cell miRNomes Reveals MicroRNA-378 and MicroRNA-30e as Negative Regulators of NK Cell Cytotoxicity.
P. Wang, Y. Gu, Q. Zhang, Y. Han, J. Hou, L. Lin, C. Wu, Y. Bao, X. Su, M. Jiang, et al. (2012)
J. Immunol. 189, 211-221
   Abstract »    Full Text »    PDF »
Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma.
I. A. Babar, C. J. Cheng, C. J. Booth, X. Liang, J. B. Weidhaas, W. M. Saltzman, and F. J. Slack (2012)
PNAS 109, E1695-E1704
   Abstract »    Full Text »    PDF »
MicroRNA-155 Is Required for Mycobacterium bovis BCG-Mediated Apoptosis of Macrophages.
D. S. Ghorpade, R. Leyland, M. Kurowska-Stolarska, S. A. Patil, and K. N. Balaji (2012)
Mol. Cell. Biol. 32, 2239-2253
   Abstract »    Full Text »    PDF »
Identification of microRNA-regulated gene networks by expression analysis of target genes.
V. A. Gennarino, G. D'Angelo, G. Dharmalingam, S. Fernandez, G. Russolillo, R. Sanges, M. Mutarelli, V. Belcastro, A. Ballabio, P. Verde, et al. (2012)
Genome Res. 22, 1163-1172
   Abstract »    Full Text »    PDF »
MicroRNA-494 Is Required for the Accumulation and Functions of Tumor-Expanded Myeloid-Derived Suppressor Cells via Targeting of PTEN.
Y. Liu, L. Lai, Q. Chen, Y. Song, S. Xu, F. Ma, X. Wang, J. Wang, H. Yu, X. Cao, et al. (2012)
J. Immunol. 188, 5500-5510
   Abstract »    Full Text »    PDF »
Regulation of acute graft-versus-host disease by microRNA-155.
P. Ranganathan, C. E. A. Heaphy, S. Costinean, N. Stauffer, C. Na, M. Hamadani, R. Santhanam, C. Mao, P. A. Taylor, S. Sandhu, et al. (2012)
Blood 119, 4786-4797
   Abstract »    Full Text »    PDF »
microRNA-301a regulation of a T-helper 17 immune response controls autoimmune demyelination.
M. P. Mycko, M. Cichalewska, A. Machlanska, H. Cwiklinska, M. Mariasiewicz, and K. W. Selmaj (2012)
PNAS 109, E1248-E1257
   Abstract »    Full Text »    PDF »
EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency.
K. J. Riley, G. S. Rabinowitz, T. A. Yario, J. M. Luna, R. B. Darnell, and J. A. Steitz (2012)
EMBO J. 31, 2207-2221
   Abstract »    Full Text »    PDF »
miR-155 regulates IFN-{gamma} production in natural killer cells.
R. Trotta, L. Chen, D. Ciarlariello, S. Josyula, C. Mao, S. Costinean, L. Yu, J. P. Butchar, S. Tridandapani, C. M. Croce, et al. (2012)
Blood 119, 3478-3485
   Abstract »    Full Text »    PDF »
Reprogramming Tumor-Associated Dendritic Cells In Vivo Using miRNA Mimetics Triggers Protective Immunity against Ovarian Cancer.
J. R. Cubillos-Ruiz, J. R. Baird, A. J. Tesone, M. R. Rutkowski, U. K. Scarlett, A. L. Camposeco-Jacobs, J. Anadon-Arnillas, N. M. Harwood, M. Korc, S. N. Fiering, et al. (2012)
Cancer Res. 72, 1683-1693
   Abstract »    Full Text »    PDF »
Non-cardiomyocyte microRNAs in heart failure.
A. J. Tijsen, Y. M. Pinto, and E. E. Creemers (2012)
Cardiovasc Res 93, 573-582
   Abstract »    Full Text »    PDF »
Breakdown in Peripheral Tolerance in Type 1 Diabetes in Mice and Humans.
L. T. Jeker, H. Bour-Jordan, and J. A. Bluestone (2012)
Cold Spring Harb Perspect Med 2, a007807
   Abstract »    Full Text »    PDF »
MicroRNAs are shaping the hematopoietic landscape.
U. Bissels, A. Bosio, and W. Wagner (2012)
Haematologica 97, 160-167
   Abstract »    Full Text »    PDF »
MicroRNAs in lung diseases.
T. Pagdin and P. Lavender (2012)
Thorax 67, 183-184
   Abstract »    Full Text »    PDF »
miR-155 regulates HGAL expression and increases lymphoma cell motility.
L. N. Dagan, X. Jiang, S. Bhatt, E. Cubedo, K. Rajewsky, and I. S. Lossos (2012)
Blood 119, 513-520
   Abstract »    Full Text »    PDF »
Genetic screen identifies microRNA cluster 99b/let-7e/125a as a regulator of primitive hematopoietic cells.
A. Gerrits, M. A. Walasek, S. Olthof, E. Weersing, M. Ritsema, E. Zwart, R. van Os, L. V. Bystrykh, and G. de Haan (2012)
Blood 119, 377-387
   Abstract »    Full Text »    PDF »
Integrative Deep Sequencing of the Mouse Lung Transcriptome Reveals Differential Expression of Diverse Classes of Small RNAs in Response to Respiratory Virus Infection.
X. Peng, L. Gralinski, M. T. Ferris, M. B. Frieman, M. J. Thomas, S. Proll, M. J. Korth, J. R. Tisoncik, M. Heise, S. Luo, et al. (2011)
mBio 2, e00198-11
   Abstract »    Full Text »    PDF »
MicroRNAs Regulate Dendritic Cell Differentiation and Function.
M. L. Turner, F. M. Schnorfeil, and T. Brocker (2011)
J. Immunol. 187, 3911-3917
   Abstract »    Full Text »    PDF »
MicroRNA-155 Promotes Resolution of Hypoxia-Inducible Factor 1{alpha} Activity during Prolonged Hypoxia.
U. Bruning, L. Cerone, Z. Neufeld, S. F. Fitzpatrick, A. Cheong, C. C. Scholz, D. A. Simpson, M. O. Leonard, M. M. Tambuwala, E. P. Cummins, et al. (2011)
Mol. Cell. Biol. 31, 4087-4096
   Abstract »    Full Text »    PDF »
MicroRNA-155 Is Essential for the T Cell-Mediated Control of Helicobacter pylori Infection and for the Induction of Chronic Gastritis and Colitis.
M. Oertli, D. B. Engler, E. Kohler, M. Koch, T. F. Meyer, and A. Muller (2011)
J. Immunol. 187, 3578-3586
   Abstract »    Full Text »    PDF »
MicroRNA function in myeloid biology.
R. M. O'Connell, J. L. Zhao, and D. S. Rao (2011)
Blood 118, 2960-2969
   Abstract »    Full Text »    PDF »
From 'JUNK' to Just Unexplored Noncoding Knowledge: the case of transcribed Alus.
R. Pandey and M. Mukerji (2011)
Briefings in Functional Genomics 10, 294-311
   Abstract »    Full Text »    PDF »
MicroRNA Regulation of Molecular Networks Mapped by Global MicroRNA, mRNA, and Protein Expression in Activated T Lymphocytes.
Y. A. Grigoryev, S. M. Kurian, T. Hart, A. A. Nakorchevsky, C. Chen, D. Campbell, S. R. Head, J. R. Yates III, and D. R. Salomon (2011)
J. Immunol. 187, 2233-2243
   Abstract »    Full Text »    PDF »
Oncogenic IRFs Provide a Survival Advantage for Epstein-Barr Virus- or Human T-Cell Leukemia Virus Type 1-Transformed Cells through Induction of BIC Expression.
L. Wang, N. L. Toomey, L. A. Diaz, G. Walker, J. C. Ramos, G. N. Barber, and S. Ning (2011)
J. Virol. 85, 8328-8337
   Abstract »    Full Text »    PDF »
MicroRNA Expression Profiles of Human Blood Monocyte-derived Dendritic Cells and Macrophages Reveal miR-511 as Putative Positive Regulator of Toll-like Receptor 4.
L. Tserel, T. Runnel, K. Kisand, M. Pihlap, L. Bakhoff, R. Kolde, H. Peterson, J. Vilo, P. Peterson, and A. Rebane (2011)
J. Biol. Chem. 286, 26487-26495
   Abstract »    Full Text »    PDF »
Signature microRNA Expression Profile of Essential Hypertension and Its Novel Link to Human Cytomegalovirus Infection.
S. Li, J. Zhu, W. Zhang, Y. Chen, K. Zhang, L. M. Popescu, X. Ma, W. Bond Lau, R. Rong, X. Yu, et al. (2011)
Circulation 124, 175-184
   Abstract »    Full Text »    PDF »
MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis.
M. Kurowska-Stolarska, S. Alivernini, L. E. Ballantine, D. L. Asquith, N. L. Millar, D. S. Gilchrist, J. Reilly, M. Ierna, A. R. Fraser, B. Stolarski, et al. (2011)
PNAS 108, 11193-11198
   Abstract »    Full Text »    PDF »
MicroRNAs in Development and Disease.
D. Sayed and M. Abdellatif (2011)
Physiol Rev 91, 827-887
   Abstract »    Full Text »    PDF »
A trio of microRNAs that control Toll-like receptor signalling.
S. R. Quinn and L. A. O'Neill (2011)
Int. Immunol. 23, 421-425
   Abstract »    Full Text »    PDF »
MicroRNA-155 is involved in the remodelling of human-trophoblast-derived HTR-8/SVneo cells induced by lipopolysaccharides.
Y. Dai, Z. Diao, H. Sun, R. Li, Z. Qiu, and Y. Hu (2011)
Hum. Reprod. 26, 1882-1891
   Abstract »    Full Text »    PDF »
A detailed investigation of accessibilities around target sites of siRNAs and miRNAs.
H. Kiryu, G. Terai, O. Imamura, H. Yoneyama, K. Suzuki, and K. Asai (2011)
Bioinformatics 27, 1788-1797
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882