Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 316 (5828): 1194-1198

Copyright © 2007 by the American Association for the Advancement of Science

Abraxas and RAP80 Form a BRCA1 Protein Complex Required for the DNA Damage Response

Bin Wang,1 Shuhei Matsuoka,1 Bryan A. Ballif,2* Dong Zhang,1{dagger} Agata Smogorzewska,1,3 Steven P. Gygi,2 Stephen J. Elledge1{ddagger}

Abstract: The BRCT repeats of the breast and ovarian cancer predisposition protein BRCA1 are essential for tumor suppression. Phosphopeptide affinity proteomic analysis identified a protein, Abraxas, that directly binds the BRCA1 BRCT repeats through a phospho-Ser-X-X-Phe motif. Abraxas binds BRCA1 to the mutual exclusion of BACH1 (BRCA1-associated C-terminal helicase) and CtIP (CtBP-interacting protein), forming a third type of BRCA1 complex. Abraxas recruits the ubiquitin-interacting motif (UIM)–containing protein RAP80 to BRCA1. Both Abraxas and RAP80 were required for DNA damage resistance, G2-M checkpoint control, and DNA repair. RAP80 was required for optimal accumulation of BRCA1 on damaged DNA (foci) in response to ionizing radiation, and the UIM domains alone were capable of foci formation. The RAP80-Abraxas complex may help recruit BRCA1 to DNA damage sites in part through recognition of ubiquitinated proteins.

1 Department of Genetics, Center for Genetics and Genomics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
2 Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
3 Department of Pathology, Massachusetts General Hospital, Boston, MA 02214, USA.

* Present address: Department of Biology, University of Vermont, Burlington, VT 05405, USA.

{dagger} Present address: Genomic Instability Group, Oncology Research, Wyeth Research, 401 North Middletown Road, Pearl River, NY 10965, USA.

{ddagger} To whom correspondence should be addressed. E-mail: selledge{at}genetics.med.harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
DNA mismatch repair gene MSH6 implicated in determining age at natural menopause.
J. R. B. Perry, Y.-H. Hsu, D. I. Chasman, A. D. Johnson, C. Elks, E. Albrecht, I. L. Andrulis, J. Beesley, G. S. Berenson, S. Bergmann, et al. (2014)
Hum. Mol. Genet. 23, 2490-2497
   Abstract »    Full Text »    PDF »
53BP1, BRCA1, and the Choice between Recombination and End Joining at DNA Double-Strand Breaks.
J. M. Daley and P. Sung (2014)
Mol. Cell. Biol. 34, 1380-1388
   Abstract »    Full Text »    PDF »
Cancer Suppression by the Chromosome Custodians, BRCA1 and BRCA2.
A. R. Venkitaraman (2014)
Science 343, 1470-1475
   Abstract »    Full Text »    PDF »
miR-9 Regulation of BRCA1 and Ovarian Cancer Sensitivity to Cisplatin and PARP Inhibition.
C. Sun, N. Li, Z. Yang, B. Zhou, Y. He, D. Weng, Y. Fang, P. Wu, P. Chen, X. Yang, et al. (2013)
J Natl Cancer Inst 105, 1750-1758
   Abstract »    Full Text »    PDF »
Physiological modulation of endogenous BRCA1 p220 abundance suppresses DNA damage during the cell cycle.
S. D. Dimitrov, D. Lu, N. Naetar, Y. Hu, S. Pathania, C. Kanellopoulou, and D. M. Livingston (2013)
Genes & Dev. 27, 2274-2291
   Abstract »    Full Text »    PDF »
FancJ regulates interstrand crosslinker induced centrosome amplification through the activation of polo-like kinase 1.
J. Zou, F. Tian, J. Li, W. Pickner, M. Long, K. Rezvani, H. Wang, and D. Zhang (2013)
Biology Open 2, 1022-1031
   Abstract »    Full Text »    PDF »
DNA Damage Sensing by the ATM and ATR Kinases.
A. Marechal and L. Zou (2013)
Cold Spring Harb Perspect Biol 5, a012716
   Abstract »    Full Text »    PDF »
The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response.
M. Li, L.-Y. Lu, C.-Y. Yang, S. Wang, and X. Yu (2013)
Genes & Dev. 27, 1752-1768
   Abstract »    Full Text »    PDF »
DNA Damage Response: Three Levels of DNA Repair Regulation.
B. M. Sirbu and D. Cortez (2013)
Cold Spring Harb Perspect Biol 5, a012724
   Abstract »    Full Text »    PDF »
Ubiquitin-dependent recruitment of the Bloom Syndrome helicase upon replication stress is required to suppress homologous recombination.
S. Tikoo, V. Madhavan, M. Hussain, E. S. Miller, P. Arora, A. Zlatanou, P. Modi, K. Townsend, G. S. Stewart, and S. Sengupta (2013)
EMBO J. 32, 1778-1792
   Abstract »    Full Text »    PDF »
The Deubiquitylating Enzyme USP44 Counteracts the DNA Double-strand Break Response Mediated by the RNF8 and RNF168 Ubiquitin Ligases.
A. Mosbech, C. Lukas, S. Bekker-Jensen, and N. Mailand (2013)
J. Biol. Chem. 288, 16579-16587
   Abstract »    Full Text »    PDF »
The interaction between CtIP and BRCA1 is not essential for resection-mediated DNA repair or tumor suppression.
C. R. Reczek, M. Szabolcs, J. M. Stark, T. Ludwig, and R. Baer (2013)
J. Cell Biol. 201, 693-707
   Abstract »    Full Text »    PDF »
RNF168 forms a functional complex with RAD6 during the DNA damage response.
C. Liu, D. Wang, J. Wu, J. Keller, T. Ma, and X. Yu (2013)
J. Cell Sci. 126, 2042-2051
   Abstract »    Full Text »    PDF »
BAL1 and Its Partner E3 Ligase, BBAP, Link Poly(ADP-Ribose) Activation, Ubiquitylation, and Double-Strand DNA Repair Independent of ATM, MDC1, and RNF8.
Q. Yan, R. Xu, L. Zhu, X. Cheng, Z. Wang, J. Manis, and M. A. Shipp (2013)
Mol. Cell. Biol. 33, 845-857
   Abstract »    Full Text »    PDF »
Poly(ADP-ribosyl)ation links the chromatin remodeler SMARCA5/SNF2H to RNF168-dependent DNA damage signaling.
G. Smeenk, W. W. Wiegant, J. A. Marteijn, M. S. Luijsterburg, N. Sroczynski, T. Costelloe, R. J. Romeijn, A. Pastink, N. Mailand, W. Vermeulen, et al. (2013)
J. Cell Sci. 126, 889-903
   Abstract »    Full Text »    PDF »
Cdk1 Protein-mediated Phosphorylation of Receptor-associated Protein 80 (RAP80) Serine 677 Modulates DNA Damage-induced G2/M Checkpoint and Cell Survival.
H. J. Cho, Y. J. Oh, S. H. Han, H. J. Chung, C. H. Kim, N. S. Lee, W.-J. Kim, J.-M. Choi, and H. Kim (2013)
J. Biol. Chem. 288, 3768-3776
   Abstract »    Full Text »    PDF »
The RING Finger Protein RNF8 Ubiquitinates Nbs1 to Promote DNA Double-strand Break Repair by Homologous Recombination.
C.-S. Lu, L. N. Truong, A. Aslanian, L. Z. Shi, Y. Li, P. Y.-H. Hwang, K. H. Koh, T. Hunter, J. R. Yates III, M. W. Berns, et al. (2012)
J. Biol. Chem. 287, 43984-43994
   Abstract »    Full Text »    PDF »
MDC1 and RNF8 function in a pathway that directs BRCA1-dependent localization of PALB2 required for homologous recombination.
F. Zhang, G. Bick, J.-Y. Park, and P. R. Andreassen (2012)
J. Cell Sci. 125, 6049-6057
   Abstract »    Full Text »    PDF »
RNF4-Dependent Hybrid SUMO-Ubiquitin Chains Are Signals for RAP80 and Thereby Mediate the Recruitment of BRCA1 to Sites of DNA Damage.
C. M. Guzzo, C. E. Berndsen, J. Zhu, V. Gupta, A. Datta, R. A. Greenberg, C. Wolberger, and M. J. Matunis (2012)
Science Signaling 5, ra88
   Abstract »    Full Text »    PDF »
Ring Finger Nuclear Factor RNF168 Is Important for Defects in Homologous Recombination Caused by Loss of the Breast Cancer Susceptibility Factor BRCA1.
M. C. Munoz, C. Laulier, A. Gunn, A. Cheng, D. F. Robbiani, A. Nussenzweig, and J. M. Stark (2012)
J. Biol. Chem. 287, 40618-40628
   Abstract »    Full Text »    PDF »
Gene Expression Signature-Based Prognostic Risk Score in Patients with Primary Central Nervous System Lymphoma.
A. Kawaguchi, Y. Iwadate, Y. Komohara, M. Sano, K. Kajiwara, N. Yajima, N. Tsuchiya, J. Homma, H. Aoki, T. Kobayashi, et al. (2012)
Clin. Cancer Res. 18, 5672-5681
   Abstract »    Full Text »    PDF »
The proteasomal de-ubiquitinating enzyme POH1 promotes the double-strand DNA break response.
L. R. Butler, R. M. Densham, J. Jia, A. J. Garvin, H. R. Stone, V. Shah, D. Weekes, F. Festy, J. Beesley, and J. R. Morris (2012)
EMBO J. 31, 3918-3934
   Abstract »    Full Text »    PDF »
RAP80 Is Critical in Maintaining Genomic Stability and Suppressing Tumor Development.
Z. Yin, D. Menendez, M. A. Resnick, J. E. French, K. S. Janardhan, and A. M. Jetten (2012)
Cancer Res. 72, 5080-5090
   Abstract »    Full Text »    PDF »
RNF8 Regulates Assembly of RAD51 at DNA Double-Strand Breaks in the Absence of BRCA1 and 53BP1.
S. Nakada, R. M. Yonamine, and K. Matsuo (2012)
Cancer Res. 72, 4974-4983
   Abstract »    Full Text »    PDF »
Charting the Landscape of Tandem BRCT Domain-Mediated Protein Interactions.
N. T. Woods, R. D. Mesquita, M. Sweet, M. A. Carvalho, X. Li, Y. Liu, H. Nguyen, C. E. Thomas, E. S. Iversen Jr., S. Marsillac, et al. (2012)
Science Signaling 5, rs6
   Abstract »    Full Text »    PDF »
The emerging role of Polycomb repressors in the response to DNA damage.
J. H. A. Vissers, M. van Lohuizen, and E. Citterio (2012)
J. Cell Sci. 125, 3939-3948
   Abstract »    Full Text »    PDF »
Mechanisms of BRCA1 Tumor Suppression.
D. P. Silver and D. M. Livingston (2012)
Cancer Discovery 2, 679-684
   Abstract »    Full Text »    PDF »
Molecular Basis of Lys-63-linked Polyubiquitination Inhibition by the Interaction between Human Deubiquitinating Enzyme OTUB1 and Ubiquitin-conjugating Enzyme UBC13.
Y. Sato, A. Yamagata, S. Goto-Ito, K. Kubota, R. Miyamoto, S. Nakada, and S. Fukai (2012)
J. Biol. Chem. 287, 25860-25868
   Abstract »    Full Text »    PDF »
Rap80 Protein Recruitment to DNA Double-strand Breaks Requires Binding to Both Small Ubiquitin-like Modifier (SUMO) and Ubiquitin Conjugates.
X. Hu, A. Paul, and B. Wang (2012)
J. Biol. Chem. 287, 25510-25519
   Abstract »    Full Text »    PDF »
Molecular Insights into the Function of RING Finger (RNF)-containing Proteins hRNF8 and hRNF168 in Ubc13/Mms2-dependent Ubiquitylation.
S. J. Campbell, R. A. Edwards, C. C. Y. Leung, D. Neculai, C. D. Hodge, S. Dhe-Paganon, and J. N. M. Glover (2012)
J. Biol. Chem. 287, 23900-23910
   Abstract »    Full Text »    PDF »
RAP80 Protein Is Important for Genomic Stability and Is Required for Stabilizing BRCA1-A Complex at DNA Damage Sites in Vivo.
J. Wu, C. Liu, J. Chen, and X. Yu (2012)
J. Biol. Chem. 287, 22919-22926
   Abstract »    Full Text »    PDF »
Degradation of Human RAP80 is Cell Cycle Regulated by Cdc20 and Cdh1 Ubiquitin Ligases.
H. J. Cho, E. H. Lee, S. H. Han, H. J. Chung, J. H. Jeong, J. Kwon, and H. Kim (2012)
Mol. Cancer Res. 10, 615-625
   Abstract »    Full Text »    PDF »
DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger.
J. R. Danielsen, L. K. Povlsen, B. H. Villumsen, W. Streicher, J. Nilsson, M. Wikstrom, S. Bekker-Jensen, and N. Mailand (2012)
J. Cell Biol. 197, 179-187
   Abstract »    Full Text »    PDF »
Human RNF169 is a negative regulator of the ubiquitin-dependent response to DNA double-strand breaks.
M. Poulsen, C. Lukas, J. Lukas, S. Bekker-Jensen, and N. Mailand (2012)
J. Cell Biol. 197, 189-199
   Abstract »    Full Text »    PDF »
Breast Cancer-Associated Abraxas Mutation Disrupts Nuclear Localization and DNA Damage Response Functions.
S. Solyom, B. Aressy, K. Pylkas, J. Patterson-Fortin, J. M. Hartikainen, A. Kallioniemi, S. Kauppila, J. Nikkila, V.-M. Kosma, A. Mannermaa, et al. (2012)
Science Translational Medicine 4, 122ra23
   Abstract »    Full Text »    PDF »
Ubiquitin and SUMO in DNA repair at a glance.
H. D. Ulrich (2012)
J. Cell Sci. 125, 249-254
   Full Text »    PDF »
Customizing systemic therapy in patients with advanced non-small cell lung cancer.
A. M. Sadowska, V. Nowe, A. Janssens, E. Boeykens, W. A. De Backer, and P. R. Germonpre (2011)
Therapeutic Advances in Medical Oncology 3, 207-218
   Abstract »    PDF »
BMI1 Is Recruited to DNA Breaks and Contributes to DNA Damage-Induced H2A Ubiquitination and Repair.
V. Ginjala, K. Nacerddine, A. Kulkarni, J. Oza, S. J. Hill, M. Yao, E. Citterio, M. van Lohuizen, and S. Ganesan (2011)
Mol. Cell. Biol. 31, 1972-1982
   Abstract »    Full Text »    PDF »
RNF8-dependent histone ubiquitination during DNA damage response and spermatogenesis.
T. Ma, J. A. Keller, and X. Yu (2011)
Acta Biochim Biophys Sin 43, 339-345
   Abstract »    Full Text »    PDF »
The BRCA1-RAP80 Complex Regulates DNA Repair Mechanism Utilization by Restricting End Resection.
K. A. Coleman and R. A. Greenberg (2011)
J. Biol. Chem. 286, 13669-13680
   Abstract »    Full Text »    PDF »
NBA1/MERIT40 and BRE Interaction Is Required for the Integrity of Two Distinct Deubiquitinating Enzyme BRCC36-containing Complexes.
X. Hu, J. A. Kim, A. Castillo, M. Huang, J. Liu, and B. Wang (2011)
J. Biol. Chem. 286, 11734-11745
   Abstract »    Full Text »    PDF »
RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci.
Y. Hu, R. Scully, B. Sobhian, A. Xie, E. Shestakova, and D. M. Livingston (2011)
Genes & Dev. 25, 685-700
   Abstract »    Full Text »    PDF »
Molecular Basis of BACH1/FANCJ Recognition by TopBP1 in DNA Replication Checkpoint Control.
C. C. Y. Leung, Z. Gong, J. Chen, and J. N. M. Glover (2011)
J. Biol. Chem. 286, 4292-4301
   Abstract »    Full Text »    PDF »
BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability.
A. Aly and S. Ganesan (2011)
J Mol Cell Biol 3, 66-74
   Abstract »    Full Text »    PDF »
Activated Inositol 1,4,5-Trisphosphate Receptors Are Modified by Homogeneous Lys-48- and Lys-63-linked Ubiquitin Chains, but Only Lys-48-linked Chains Are Required for Degradation.
D. A. Sliter, M. Aguiar, S. P. Gygi, and R. J. H. Wojcikiewicz (2011)
J. Biol. Chem. 286, 1074-1082
   Abstract »    Full Text »    PDF »
RAP80 Acts Independently of BRCA1 in Repair of Topoisomerase II Poison-Induced DNA Damage.
J. Iijima, Z. Zeng, S. Takeda, and Y. Taniguchi (2010)
Cancer Res. 70, 8467-8474
   Abstract »    Full Text »    PDF »
A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage.
D. M. Chou, B. Adamson, N. E. Dephoure, X. Tan, A. C. Nottke, K. E. Hurov, S. P. Gygi, M. P. Colaiacovo, and S. J. Elledge (2010)
PNAS 107, 18475-18480
   Abstract »    Full Text »    PDF »
The Lys63-specific Deubiquitinating Enzyme BRCC36 Is Regulated by Two Scaffold Proteins Localizing in Different Subcellular Compartments.
L. Feng, J. Wang, and J. Chen (2010)
J. Biol. Chem. 285, 30982-30988
   Abstract »    Full Text »    PDF »
Differential Regulation of JAMM Domain Deubiquitinating Enzyme Activity within the RAP80 Complex.
J. Patterson-Fortin, G. Shao, H. Bretscher, T. E. Messick, and R. A. Greenberg (2010)
J. Biol. Chem. 285, 30971-30981
   Abstract »    Full Text »    PDF »
Recruitment of Phosphorylated NPM1 to Sites of DNA Damage through RNF8-Dependent Ubiquitin Conjugates.
A. Koike, H. Nishikawa, W. Wu, Y. Okada, A. R. Venkitaraman, and T. Ohta (2010)
Cancer Res. 70, 6746-6756
   Abstract »    Full Text »    PDF »
FAN1 Acts with FANCI-FANCD2 to Promote DNA Interstrand Cross-Link Repair.
T. Liu, G. Ghosal, J. Yuan, J. Chen, and J. Huang (2010)
Science 329, 693-696
   Abstract »    Full Text »    PDF »
HERC2 Is an E3 Ligase That Targets BRCA1 for Degradation.
W. Wu, K. Sato, A. Koike, H. Nishikawa, H. Koizumi, A. R. Venkitaraman, and T. Ohta (2010)
Cancer Res. 70, 6384-6392
   Abstract »    Full Text »    PDF »
DNA Damage-Induced Cytotoxicity Is Dissociated from BRCA1's DNA Repair Function but Is Dependent on Its Cytosolic Accumulation.
H. Wang, E. S. Yang, J. Jiang, S. Nowsheen, and F. Xia (2010)
Cancer Res. 70, 6258-6267
   Abstract »    Full Text »    PDF »
Akt Activation Emulates Chk1 Inhibition and Bcl2 Overexpression and Abrogates G2 Cell Cycle Checkpoint by Inhibiting BRCA1 Foci.
I. Tonic, W.-N. Yu, Y. Park, C.-C. Chen, and N. Hay (2010)
J. Biol. Chem. 285, 23790-23798
   Abstract »    Full Text »    PDF »
Connecting the Dots: Interplay between Ubiquitylation and SUMOylation at DNA Double-Strand Breaks.
J.-b. Tang and R. A. Greenberg (2010)
Genes & Cancer 1, 787-796
   Abstract »    Full Text »    PDF »
Comprehensive Analysis of Missense Variations in the BRCT Domain of BRCA1 by Structural and Functional Assays.
M. S. Lee, R. Green, S. M. Marsillac, N. Coquelle, R. S. Williams, T. Yeung, D. Foo, D. D. Hau, B. Hui, A. N. A. Monteiro, et al. (2010)
Cancer Res. 70, 4880-4890
   Abstract »    Full Text »    PDF »
BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair.
P. J. O'Donovan and D. M. Livingston (2010)
Carcinogenesis 31, 961-967
   Abstract »    Full Text »    PDF »
Sensitivity to Poly(ADP-ribose) Polymerase (PARP) Inhibition Identifies Ubiquitin-specific Peptidase 11 (USP11) as a Regulator of DNA Double-strand Break Repair.
T. D. Wiltshire, C. A. Lovejoy, T. Wang, F. Xia, M. J. O'Connor, and D. Cortez (2010)
J. Biol. Chem. 285, 14565-14571
   Abstract »    Full Text »    PDF »
The human intra-S checkpoint response to UVC-induced DNA damage.
W. K. Kaufmann (2010)
Carcinogenesis 31, 751-765
   Abstract »    Full Text »    PDF »
A cooperative activation loop among SWI/SNF, {gamma}-H2AX and H3 acetylation for DNA double-strand break repair.
H.-S. Lee, J.-H. Park, S.-J. Kim, S.-J. Kwon, and J. Kwon (2010)
EMBO J. 29, 1434-1445
   Abstract »    Full Text »    PDF »
Specificity of the BRISC Deubiquitinating Enzyme Is Not Due to Selective Binding to Lys63-linked Polyubiquitin.
E. M. Cooper, J. D. Boeke, and R. E. Cohen (2010)
J. Biol. Chem. 285, 10344-10352
   Abstract »    Full Text »    PDF »
Abstract PL2-2: The genomic landscape in lung cancer.
R. Rosell (2010)
Clin. Cancer Res. 16, PL2-2
The ubiquitin landscape at DNA double-strand breaks.
T. E. Messick and R. A. Greenberg (2009)
J. Cell Biol. 187, 319-326
   Abstract »    Full Text »    PDF »
Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response.
J. A. Marteijn, S. Bekker-Jensen, N. Mailand, H. Lans, P. Schwertman, A. M. Gourdin, N. P. Dantuma, J. Lukas, and W. Vermeulen (2009)
J. Cell Biol. 186, 835-847
   Abstract »    Full Text »    PDF »
Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80.
Y. Sato, A. Yoshikawa, H. Mimura, M. Yamashita, A. Yamagata, and S. Fukai (2009)
EMBO J. 28, 2461-2468
   Abstract »    Full Text »    PDF »
A Regulatory Loop Composed of RAP80-HDM2-p53 Provides RAP80-enhanced p53 Degradation by HDM2 in Response to DNA Damage.
J. Yan, D. Menendez, X.-P. Yang, M. A. Resnick, and A. M. Jetten (2009)
J. Biol. Chem. 284, 19280-19289
   Abstract »    Full Text »    PDF »
PALB2 is an integral component of the BRCA complex required for homologous recombination repair.
S. M. H. Sy, M. S. Y. Huen, and J. Chen (2009)
PNAS 106, 7155-7160
   Abstract »    Full Text »    PDF »
Chromatin remodeling finds its place in the DNA double-strand break response.
T. K. Pandita and C. Richardson (2009)
Nucleic Acids Res. 37, 1363-1377
   Abstract »    Full Text »    PDF »
K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1.
E. M. Cooper, C. Cutcliffe, T. Z. Kristiansen, A. Pandey, C. M. Pickart, and R. E. Cohen (2009)
EMBO J. 28, 621-631
   Abstract »    Full Text »    PDF »
NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control.
B. Wang, K. Hurov, K. Hofmann, and S. J. Elledge (2009)
Genes & Dev. 23, 729-739
   Abstract »    Full Text »    PDF »
MERIT40 facilitates BRCA1 localization and DNA damage repair.
L. Feng, J. Huang, and J. Chen (2009)
Genes & Dev. 23, 719-728
   Abstract »    Full Text »    PDF »
MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks.
G. Shao, J. Patterson-Fortin, T. E. Messick, D. Feng, N. Shanbhag, Y. Wang, and R. A. Greenberg (2009)
Genes & Dev. 23, 740-754
   Abstract »    Full Text »    PDF »
Accumulation of Pax2 Transactivation Domain Interaction Protein (PTIP) at Sites of DNA Breaks via RNF8-dependent Pathway Is Required for Cell Survival after DNA Damage.
Z. Gong, Y.-W. Cho, J.-E. Kim, K. Ge, and J. Chen (2009)
J. Biol. Chem. 284, 7284-7293
   Abstract »    Full Text »    PDF »
The Rap80-BRCC36 de-ubiquitinating enzyme complex antagonizes RNF8-Ubc13-dependent ubiquitination events at DNA double strand breaks.
G. Shao, D. R. Lilli, J. Patterson-Fortin, K. A. Coleman, D. E. Morrissey, and R. A. Greenberg (2009)
PNAS 106, 3166-3171
   Abstract »    Full Text »    PDF »
An Oligomerized 53BP1 Tudor Domain Suffices for Recognition of DNA Double-Strand Breaks.
O. Zgheib, K. Pataky, J. Brugger, and T. D. Halazonetis (2009)
Mol. Cell. Biol. 29, 1050-1058
   Abstract »    Full Text »    PDF »
Histone Ubiquitination Associates with BRCA1-Dependent DNA Damage Response.
J. Wu, M. S. Y. Huen, L.-Y. Lu, L. Ye, Y. Dou, M. Ljungman, J. Chen, and X. Yu (2009)
Mol. Cell. Biol. 29, 849-860
   Abstract »    Full Text »    PDF »
Rapid Recruitment of BRCA1 to DNA Double-Strand Breaks Is Dependent on Its Association with Ku80.
L. Wei, L. Lan, Z. Hong, A. Yasui, C. Ishioka, and N. Chiba (2008)
Mol. Cell. Biol. 28, 7380-7393
   Abstract »    Full Text »    PDF »
Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis.
K. Minter-Dykhouse, I. Ward, M. S.Y. Huen, J. Chen, and Z. Lou (2008)
J. Cell Biol. 181, 727-735
   Abstract »    Full Text »    PDF »
Regulation of Chk2 Ubiquitination and Signaling through Autophosphorylation of Serine 379.
C. M. Lovly, L. Yan, C. E. Ryan, S. Takada, and H. Piwnica-Worms (2008)
Mol. Cell. Biol. 28, 5874-5885
   Abstract »    Full Text »    PDF »
Structural and functional analysis of the Crb2-BRCT2 domain reveals distinct roles in checkpoint signaling and DNA damage repair.
M. L. Kilkenny, A. S. Dore, S. M. Roe, K. Nestoras, J. C.Y. Ho, F. Z. Watts, and L. H. Pearl (2008)
Genes & Dev. 22, 2034-2047
   Abstract »    Full Text »    PDF »
RAP80 Responds to DNA Damage Induced by Both Ionizing Radiation and UV Irradiation and Is Phosphorylated at Ser205.
J. Yan, X.-P. Yang, Y.-S. Kim, and A. M. Jetten (2008)
Cancer Res. 68, 4269-4276
   Abstract »    Full Text »    PDF »
Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage.
B. Wang and S. J. Elledge (2007)
PNAS 104, 20759-20763
   Abstract »    Full Text »    PDF »
Launching a ubiquitination cascade at DNA breaks.
X. H. Yang and L. Zou (2007)
PNAS 104, 20645-20646
   Full Text »    PDF »
Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase.
N. K. Kolas, J. R. Chapman, S. Nakada, J. Ylanko, R. Chahwan, F. D. Sweeney, S. Panier, M. Mendez, J. Wildenhain, T. M. Thomson, et al. (2007)
Science 318, 1637-1640
   Abstract »    Full Text »    PDF »
DNA Damage-Dependent Acetylation and Ubiquitination of H2AX Enhances Chromatin Dynamics.
T. Ikura, S. Tashiro, A. Kakino, H. Shima, N. Jacob, R. Amunugama, K. Yoder, S. Izumi, I. Kuraoka, K. Tanaka, et al. (2007)
Mol. Cell. Biol. 27, 7028-7040
   Abstract »    Full Text »    PDF »
DNA repair capacity of zebrafish.
R. Sussman (2007)
PNAS 104, 13379-13383
   Abstract »    Full Text »    PDF »
CELL SIGNALING: A Touching Response to Damage.
J. H. J. Petrini (2007)
Science 316, 1138-1139
   Abstract »    Full Text »    PDF »
ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage.
S. Matsuoka, B. A. Ballif, A. Smogorzewska, E. R. McDonald III, K. E. Hurov, J. Luo, C. E. Bakalarski, Z. Zhao, N. Solimini, Y. Lerenthal, et al. (2007)
Science 316, 1160-1166
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882