Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 316 (5829): 1349-1353

Copyright © 2007 by the American Association for the Advancement of Science

Regulation of CD8+ T Cell Development by Thymus-Specific Proteasomes

Shigeo Murata,1,2* Katsuhiro Sasaki,1 Toshihiko Kishimoto,3,4 Shin-ichiro Niwa,5 Hidemi Hayashi,3,5 Yousuke Takahama,6 Keiji Tanaka1

Abstract: Proteasomes are responsible for generating peptides presented by the class I major histocompatibility complex (MHC) molecules of the immune system. Here, we report the identification of a previously unrecognized catalytic subunit called ß5t. ß5t is expressed exclusively in cortical thymic epithelial cells, which are responsible for the positive selection of developing thymocytes. Although the chymotrypsin-like activity of proteasomes is considered to be important for the production of peptides with high affinities for MHC class I clefts, incorporation of ß5t into proteasomes in place of ß5 or ß5i selectively reduces this activity. We also found that ß5t-deficient mice displayed defective development of CD8+ T cells in the thymus. Our results suggest a key role for ß5t in generating the MHC class I–restricted CD8+ T cell repertoire during thymic selection.

1 Laboratory of Frontier Science, Core Technology and Research Center, Tokyo Metropolitan Institute of Medical Science, Bunkyo-ku, Tokyo 113-8613, Japan.
2 Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
3 Proteome Analysis Center, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan.
4 Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba 274-8510, Japan.
5 Link Genomics, Chuo-ku, Tokyo 103-0024, Japan.
6 Division of Experimental Immunology, Institute for Genome Research, Graduate School of Medical Science, University of Tokushima, Tokushima 770-8503, Japan.

* To whom correspondence should be addressed. E-mail: smurata{at}rinshoken.or.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Translating DRiPs: MHC class I immunosurveillance of pathogens and tumors.
L. C. Anton and J. W. Yewdell (2014)
J. Leukoc. Biol. 95, 551-562
   Abstract »    Full Text »    PDF »
Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines.
A. Ori, N. Banterle, M. Iskar, A. Andres-Pons, C. Escher, H. Khanh Bui, L. Sparks, V. Solis-Mezarino, O. Rinner, P. Bork, et al. (2014)
Mol Syst Biol 9, 648
   Abstract »    Full Text »    PDF »
Expression of thymoproteasome subunit {beta}5t in type AB thymoma.
Y. Yamada, U. Tomaru, A. Ishizu, T. Kiuchi, M. Kasahara, and Y. Matsuno (2014)
J. Clin. Pathol. 67, 276-278
   Abstract »    Full Text »    PDF »
Distinct Temporal Patterns of T Cell Receptor Signaling During Positive Versus Negative Selection in Situ.
H. J. Melichar, J. O. Ross, P. Herzmark, K. A. Hogquist, and E. A. Robey (2013)
Science Signaling 6, ra92
   Abstract »    Full Text »    PDF »
Aire-expressing thymic medullary epithelial cells originate from {beta}5t-expressing progenitor cells.
I. Ohigashi, S. Zuklys, M. Sakata, C. E. Mayer, S. Zhanybekova, S. Murata, K. Tanaka, G. A. Hollander, and Y. Takahama (2013)
PNAS 110, 9885-9890
   Abstract »    Full Text »    PDF »
Gene Expression of Catalytic Proteasome Subunits and Resistance Toward Proteasome Inhibition of B Lymphocytes from Patients with Primary Sjogren Syndrome.
L. Martinez-Gamboa, K. Lesemann, U. Kuckelkorn, S. Scheffler, K. Ghannam, M. Hahne, T. Gaber-Elsner, K. Egerer, L. Naumann, F. Buttgereit, et al. (2013)
J Rheumatol 40, 663-673
   Abstract »    Full Text »    PDF »
Thymoproteasome subunit-{beta}5T generates peptide-MHC complexes specialized for positive selection.
Y. Xing, S. C. Jameson, and K. A. Hogquist (2013)
PNAS 110, 6979-6984
   Abstract »    Full Text »    PDF »
Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition.
S.-W. Shin, N. Shimizu, M. Tokoro, S. Nishikawa, Y. Hatanaka, M. Anzai, J. Hamazaki, S. Kishigami, K. Saeki, Y. Hosoi, et al. (2013)
Biology Open 2, 170-182
   Abstract »    Full Text »    PDF »
Developmentally Regulated Availability of RANKL and CD40 Ligand Reveals Distinct Mechanisms of Fetal and Adult Cross-Talk in the Thymus Medulla.
G. E. Desanti, J. E. Cowan, S. Baik, S. M. Parnell, A. J. White, J. M. Penninger, P. J. L. Lane, E. J. Jenkinson, W. E. Jenkinson, and G. Anderson (2012)
J. Immunol. 189, 5519-5526
   Abstract »    Full Text »    PDF »
Thymic nurse cells provide microenvironment for secondary T cell receptor {alpha} rearrangement in cortical thymocytes.
Y. Nakagawa, I. Ohigashi, T. Nitta, M. Sakata, K. Tanaka, S. Murata, O. Kanagawa, and Y. Takahama (2012)
PNAS 109, 20572-20577
   Abstract »    Full Text »    PDF »
MicroRNAs Control the Maintenance of Thymic Epithelia and Their Competence for T Lineage Commitment and Thymocyte Selection.
S. Zuklys, C. E. Mayer, S. Zhanybekova, H. E. Stefanski, G. Nusspaumer, J. Gill, T. Barthlott, S. Chappaz, T. Nitta, J. Dooley, et al. (2012)
J. Immunol. 189, 3894-3904
   Abstract »    Full Text »    PDF »
Analysis of the Processing of Seven Human Tumor Antigens by Intermediate Proteasomes.
B. Guillaume, V. Stroobant, M.-P. Bousquet-Dubouch, D. Colau, J. Chapiro, N. Parmentier, A. Dalet, and B. J. Van den Eynde (2012)
J. Immunol. 189, 3538-3547
   Abstract »    Full Text »    PDF »
Proteasome subunit {beta}5t expression in cervical ectopic thymoma.
U. Tomaru, Y. Yamada, A. Ishizu, T. Kuroda, Y. Matsuno, and M. Kasahara (2012)
J. Clin. Pathol. 65, 858-859
   Full Text »    PDF »
Why the Structure but Not the Activity of the Immunoproteasome Subunit Low Molecular Mass Polypeptide 2 Rescues Antigen Presentation.
M. Basler, C. Lauer, J. Moebius, R. Weber, M. Przybylski, A. F. Kisselev, C. Tsu, and M. Groettrup (2012)
J. Immunol. 189, 1868-1877
   Abstract »    Full Text »    PDF »
T-Cell Tolerance: Central and Peripheral.
Y. Xing and K. A. Hogquist (2012)
Cold Spring Harb Perspect Biol 4, a006957
   Abstract »    Full Text »    PDF »
Mesenchymal Cells Regulate Retinoic Acid Receptor-Dependent Cortical Thymic Epithelial Cell Homeostasis.
K. M. Sitnik, K. Kotarsky, A. J. White, W. E. Jenkinson, G. Anderson, and W. W. Agace (2012)
J. Immunol. 188, 4801-4809
   Abstract »    Full Text »    PDF »
Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors.
K. M. Heinonen, J. Ruiz Vanegas, S. Brochu, J. Shan, S. J. Vainio, and C. Perreault (2011)
Blood 118, 5163-5173
   Abstract »    Full Text »    PDF »
Structural Defects in the Regulatory Particle-Core Particle Interface of the Proteasome Induce a Novel Proteasome Stress Response.
S. Park, W. Kim, G. Tian, S. P. Gygi, and D. Finley (2011)
J. Biol. Chem. 286, 36652-36666
   Abstract »    Full Text »    PDF »
Development and Function of Innate Polyclonal TCR{alpha}{beta}+ CD8+ Thymocytes.
M. Rafei, M.-P. Hardy, P. Williams, J. R. Vanegas, K.-A. Forner, G. Dulude, N. Labrecque, J. Galipeau, and C. Perreault (2011)
J. Immunol. 187, 3133-3144
   Abstract »    Full Text »    PDF »
Heterogeneous Cardiac Proteasomes: Mandated by Diverse Substrates?.
S. B. Scruggs, P. Ping, and C. Zong (2011)
Physiology 26, 106-114
   Abstract »    Full Text »    PDF »
Regulation of Inducible Nitric-oxide Synthase by the SPRY Domain- and SOCS Box-containing Proteins.
T. Nishiya, K. Matsumoto, S. Maekawa, E. Kajita, T. Horinouchi, M. Fujimuro, K. Ogasawara, T. Uehara, and S. Miwa (2011)
J. Biol. Chem. 286, 9009-9019
   Abstract »    Full Text »    PDF »
Osmotic Stress Inhibits Proteasome by p38 MAPK-dependent Phosphorylation.
S.-H. Lee, Y. Park, S. K. Yoon, and J.-B. Yoon (2010)
J. Biol. Chem. 285, 41280-41289
   Abstract »    Full Text »    PDF »
A Novel Testis-specific GTPase Serves as a Link to Proteasome Biogenesis: Functional Characterization of RhoS/RSA-14-44 in Spermatogenesis.
N. Zhang, J. Liang, Y. Tian, L. Yuan, L. Wu, S. Miao, S. Zong, and L. Wang (2010)
Mol. Biol. Cell 21, 4312-4324
   Abstract »    Full Text »    PDF »
Structure, Assembly and Homeostatic Regulation of the 26S Proteasome.
Y. Xie (2010)
J Mol Cell Biol 2, 308-317
   Abstract »    Full Text »    PDF »
Two abundant proteasome subtypes that uniquely process some antigens presented by HLA class I molecules.
B. Guillaume, J. Chapiro, V. Stroobant, D. Colau, B. Van Holle, G. Parvizi, M.-P. Bousquet-Dubouch, I. Theate, N. Parmentier, and B. J. Van den Eynde (2010)
PNAS 107, 18599-18604
   Abstract »    Full Text »    PDF »
Lymphotoxin Signals from Positively Selected Thymocytes Regulate the Terminal Differentiation of Medullary Thymic Epithelial Cells.
A. J. White, K. Nakamura, W. E. Jenkinson, M. Saini, C. Sinclair, B. Seddon, P. Narendran, K. Pfeffer, T. Nitta, Y. Takahama, et al. (2010)
J. Immunol. 185, 4769-4776
   Abstract »    Full Text »    PDF »
Proteases in MHC Class I Presentation and Cross-Presentation.
K. L. Rock, D. J. Farfan-Arribas, and L. Shen (2010)
J. Immunol. 184, 9-15
   Abstract »    Full Text »    PDF »
CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens.
T. Nitta, S. Nitta, Y. Lei, M. Lipp, and Y. Takahama (2009)
PNAS 106, 17129-17133
   Abstract »    Full Text »    PDF »
Exclusive expression of proteasome subunit {beta}5t in the human thymic cortex.
U. Tomaru, A. Ishizu, S. Murata, Y. Miyatake, S. Suzuki, S. Takahashi, T. Kazamaki, J. Ohara, T. Baba, S. Iwasaki, et al. (2009)
Blood 113, 5186-5191
   Abstract »    Full Text »    PDF »
Dichotomous Haplotypic Lineages of the Immunoproteasome Subunit Genes, PSMB8 and PSMB10, in the MHC Class I Region of a Teleost Medaka, Oryzias latipes.
K. Tsukamoto, M. Sakaizumi, M. Hata, Y. Sawara, J. Eah, C.-B. Kim, and M. Nonaka (2009)
Mol. Biol. Evol. 26, 769-781
   Abstract »    Full Text »    PDF »
Checkpoints in the Development of Thymic Cortical Epithelial Cells.
S. Shakib, G. E. Desanti, W. E. Jenkinson, S. M. Parnell, E. J. Jenkinson, and G. Anderson (2009)
J. Immunol. 182, 130-137
   Abstract »    Full Text »    PDF »
Dissecting {beta}-ring assembly pathway of the mammalian 20S proteasome.
Y. Hirano, T. Kaneko, K. Okamoto, M. Bai, H. Yashiroda, K. Furuyama, K. Kato, K. Tanaka, and S. Murata (2008)
EMBO J. 27, 2204-2213
   Abstract »    Full Text »    PDF »
The Proteasome Immunosubunit Multicatalytic Endopeptidase Complex-Like 1 Is a T-Cell-Intrinsic Factor Influencing Homeostatic Expansion.
D. M. W. Zaiss, N. de Graaf, and A. J. A. M. Sijts (2008)
Infect. Immun. 76, 1207-1213
   Abstract »    Full Text »    PDF »
Why T Cells of Thymic Versus Extrathymic Origin Are Functionally Different.
M.-E. Blais, S. Brochu, M. Giroux, M.-P. Belanger, G. Dulude, R.-P. Sekaly, and C. Perreault (2008)
J. Immunol. 180, 2299-2312
   Abstract »    Full Text »    PDF »
IMMUNOLOGY: The Cutting Edge of T Cell Selection.
M. J. Bevan (2007)
Science 316, 1291-1292
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882