Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 316 (5831): 1632-1634

Copyright © 2007 by the American Association for the Advancement of Science

Crystal Structures of Human MD-2 and Its Complex with Antiendotoxic Lipid IVa

Umeharu Ohto,1 Koichi Fukase,2 Kensuke Miyake,3,4 Yoshinori Satow1*

Abstract: Endotoxic lipopolysaccharide (LPS) with potent immunostimulatory activity is recognized by the receptor complex of MD-2 and Toll-like receptor 4. Crystal structures of human MD-2 and its complex with the antiendotoxic tetra-acylated lipid A core of LPS have been determined at 2.0 and 2.2 angstrom resolutions, respectively. MD-2 shows a deep hydrophobic cavity sandwiched by two ß sheets, in which four acyl chains of the ligand are fully confined. The phosphorylated glucosamine moieties are located at the entrance to the cavity. These structures suggest that MD-2 plays a principal role in endotoxin recognition and provide a basis for antiseptic drug development.

1 Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
2 Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
3 Division of Infectious Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
4 CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

* To whom correspondence should be addressed. E-mail: satowy{at}

TLR4 Ligands Lipopolysaccharide and Monophosphoryl Lipid A Differentially Regulate Effector and Memory CD8+ T Cell Differentiation.
W. Cui, N. S. Joshi, Y. Liu, H. Meng, S. H. Kleinstein, and S. M. Kaech (2014)
J. Immunol. 192, 4221-4232
   Abstract »    Full Text »    PDF »
Tetraacylated Lipid A and Paclitaxel-Selective Activation of TLR4/MD-2 Conferred through Hydrophobic Interactions.
N. Resman, A. Oblak, T. L. Gioannini, J. P. Weiss, and R. Jerala (2014)
J. Immunol. 192, 1887-1895
   Abstract »    Full Text »    PDF »
The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane.
N. Tanimura, S.-i. Saitoh, U. Ohto, S. Akashi-Takamura, Y. Fujimoto, K. Fukase, T. Shimizu, and K. Miyake (2014)
Int. Immunol.
   Abstract »    Full Text »    PDF »
The Structural Basis for Endotoxin-induced Allosteric Regulation of the Toll-like Receptor 4 (TLR4) Innate Immune Receptor.
T. Paramo, T. J. Piggot, C. E. Bryant, and P. J. Bond (2013)
J. Biol. Chem. 288, 36215-36225
   Abstract »    Full Text »    PDF »
Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation.
I. Paciello, A. Silipo, L. Lembo-Fazio, L. Curcuru, A. Zumsteg, G. Noel, V. Ciancarella, L. Sturiale, A. Molinaro, and M. L. Bernardini (2013)
PNAS 110, E4345-E4354
   Abstract »    Full Text »    PDF »
Radioiodination of an endotoxin{middle dot}MD-2 complex generates a novel sensitive, high-affinity ligand for TLR4.
A. Teghanemt, J. P. Weiss, and T. L. Gioannini (2013)
Innate Immunity 19, 545-560
   Abstract »    Full Text »    PDF »
Minor Modifications to the Phosphate Groups and the C3' Acyl Chain Length of Lipid A in Two Bordetella pertussis Strains, BP338 and 18-323, Independently Affect Toll-like Receptor 4 Protein Activation.
N. R. Shah, S. AlBitar-Nehme, E. Kim, N. Marr, A. Novikov, M. Caroff, and R. C. Fernandez (2013)
J. Biol. Chem. 288, 11751-11760
   Abstract »    Full Text »    PDF »
TLR4-MD-2 complex is negatively regulated by an endogenous ligand, globotetraosylceramide.
Y. Kondo, K. Ikeda, N. Tokuda, C. Nishitani, U. Ohto, S. Akashi-Takamura, Y. Ito, M. Uchikawa, Y. Kuroki, R. Taguchi, et al. (2013)
PNAS 110, 4714-4719
   Abstract »    Full Text »    PDF »
The Crystal Structure of Human Soluble CD14 Reveals a Bent Solenoid with a Hydrophobic Amino-Terminal Pocket.
S. L. Kelley, T. Lukk, S. K. Nair, and R. I. Tapping (2013)
J. Immunol. 190, 1304-1311
   Abstract »    Full Text »    PDF »
Human TLR4 polymorphism D299G/T399I alters TLR4/MD-2 conformation and response to a weak ligand monophosphoryl lipid A.
N. Yamakawa, U. Ohto, S. Akashi-Takamura, K. Takahashi, S.-I. Saitoh, N. Tanimura, T. Suganami, Y. Ogawa, T. Shibata, T. Shimizu, et al. (2013)
Int. Immunol. 25, 45-52
   Abstract »    Full Text »    PDF »
Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers.
I. Teo, S. M. Toms, B. Marteyn, T. S. Barata, P. Simpson, K. A. Johnston, P. Schnupf, A. Puhar, T. Bell, C. Tang, et al. (2012)
EMBO Mol Med. 4, 866-881
   Abstract »    Full Text »    PDF »
Endotoxin{middle dot}albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4.
G. A. Esparza, A. Teghanemt, D. Zhang, T. L. Gioannini, and J. P. Weiss (2012)
Innate Immunity 18, 478-491
   Abstract »    Full Text »    PDF »
The RP105/MD-1 complex is indispensable for TLR4/MD-2-dependent proliferation and IgM-secreting plasma cell differentiation of marginal zone B cells.
Y. Nagai, T. Yanagibashi, Y. Watanabe, M. Ikutani, A. Kariyone, S. Ohta, Y. Hirai, M. Kimoto, K. Miyake, and K. Takatsu (2012)
Int. Immunol. 24, 389-400
   Abstract »    Full Text »    PDF »
NMR Studies of Hexaacylated Endotoxin Bound to Wild-type and F126A Mutant MD-2 and MD-2{middle dot}TLR4 Ectodomain Complexes.
L. Yu, R. L. Phillips, D. Zhang, A. Teghanemt, J. P. Weiss, and T. L. Gioannini (2012)
J. Biol. Chem. 287, 16346-16355
   Abstract »    Full Text »    PDF »
Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2.
U. Ohto, K. Fukase, K. Miyake, and T. Shimizu (2012)
PNAS 109, 7421-7426
   Abstract »    Full Text »    PDF »
Morphine activates neuroinflammation in a manner parallel to endotoxin.
X. Wang, L. C. Loram, K. Ramos, A. J. de Jesus, J. Thomas, K. Cheng, A. Reddy, A. A. Somogyi, M. R. Hutchinson, L. R. Watkins, et al. (2012)
PNAS 109, 6325-6330
   Abstract »    Full Text »    PDF »
Selective TRIF-Dependent Signaling by a Synthetic Toll-Like Receptor 4 Agonist.
W. S. Bowen, L. A. Minns, D. A. Johnson, T. C. Mitchell, M. M. Hutton, and J. T. Evans (2012)
Science Signaling 5, ra13
   Abstract »    Full Text »    PDF »
Delineation of Lipopolysaccharide (LPS)-binding Sites on Hemoglobin: FROM IN SILICO PREDICTIONS TO BIOPHYSICAL CHARACTERIZATION.
N. Bahl, R. Du, I. Winarsih, B. Ho, L. Tucker-Kellogg, B. Tidor, and J. L. Ding (2011)
J. Biol. Chem. 286, 37793-37803
   Abstract »    Full Text »    PDF »
Intracellular TLR4/MD-2 in macrophages senses Gram-negative bacteria and induces a unique set of LPS-dependent genes.
T. Shibata, Y. Motoi, N. Tanimura, N. Yamakawa, S. Akashi-Takamura, and K. Miyake (2011)
Int. Immunol. 23, 503-510
   Abstract »    Full Text »    PDF »
Interferon-{gamma}-induced MD-2 Protein Expression and Lipopolysaccharide (LPS) Responsiveness in Corneal Epithelial Cells Is Mediated by Janus Tyrosine Kinase-2 Activation and Direct Binding of STAT1 Protein to the MD-2 Promoter.
S. Roy, Y. Sun, and E. Pearlman (2011)
J. Biol. Chem. 286, 23753-23762
   Abstract »    Full Text »    PDF »
MD-2 as the Target of Nonlipid Chalcone in the Inhibition of Endotoxin LPS-Induced TLR4 Activity.
E. Roh, H.-S. Lee, J.-A. Kwak, J. T. Hong, S.-Y. Nam, S.-H. Jung, J. Y. Lee, N. D. Kim, S.-B. Han, and Y. Kim (2011)
The Journal of Infectious Disease 203, 1012-1020
   Abstract »    Full Text »    PDF »
Neisseria meningitidis capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2.
S. M. Zughaier (2011)
J. Leukoc. Biol. 89, 469-480
   Abstract »    Full Text »    PDF »
The Lipid A Phosphate Position Determines Differential Host Toll-Like Receptor 4 Responses to Phylogenetically Related Symbiotic and Pathogenic Bacteria.
S. R. Coats, A. B. Berezow, T. T. To, S. Jain, B. W. Bainbridge, K. P. Banani, and R. P. Darveau (2011)
Infect. Immun. 79, 203-210
   Abstract »    Full Text »    PDF »
Phosphoryl Moieties of Lipid A from Neisseria meningitidis and N. gonorrhoeae Lipooligosaccharides Play an Important Role in Activation of Both MyD88- and TRIF-Dependent TLR4-MD-2 Signaling Pathways.
M. Liu, C. M. John, and G. A. Jarvis (2010)
J. Immunol. 185, 6974-6984
   Abstract »    Full Text »    PDF »
Structure and Functional Analysis of LptC, a Conserved Membrane Protein Involved in the Lipopolysaccharide Export Pathway in Escherichia coli.
A. X. Tran, C. Dong, and C. Whitfield (2010)
J. Biol. Chem. 285, 33529-33539
   Abstract »    Full Text »    PDF »
MD-2 Residues Tyrosine 42, Arginine 69, Aspartic Acid 122, and Leucine 125 Provide Species Specificity for Lipid IVA.
J. Meng, J. R. Drolet, B. G. Monks, and D. T. Golenbock (2010)
J. Biol. Chem. 285, 27935-27943
   Abstract »    Full Text »    PDF »
Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis.
T. H. Yeats, K. J. Howe, A. J. Matas, G. J. Buda, T. W. Thannhauser, and J. K. C. Rose (2010)
J. Exp. Bot. 61, 3759-3771
   Abstract »    Full Text »    PDF »
Crystal structure of soluble MD-1 and its interaction with lipid IVa.
S.-i. Yoon, M. Hong, G. W. Han, and I. A. Wilson (2010)
PNAS 107, 10990-10995
   Abstract »    Full Text »    PDF »
Identification of a Novel Human MD-2 Splice Variant That Negatively Regulates Lipopolysaccharide-Induced TLR4 Signaling.
P. Gray, K. S. Michelsen, C. M. Sirois, E. Lowe, K. Shimada, T. R. Crother, S. Chen, C. Brikos, Y. Bulut, E. Latz, et al. (2010)
J. Immunol. 184, 6359-6366
   Abstract »    Full Text »    PDF »
Substitution of the Bordetella pertussis Lipid A Phosphate Groups with Glucosamine Is Required for Robust NF-{kappa}B Activation and Release of Proinflammatory Cytokines in Cells Expressing Human but Not Murine Toll-Like Receptor 4-MD-2-CD14.
N. Marr, A. M. Hajjar, N. R. Shah, A. Novikov, C. S. Yam, M. Caroff, and R. C. Fernandez (2010)
Infect. Immun. 78, 2060-2069
   Abstract »    Full Text »    PDF »
Iris Pigment Epithelial Cells Express a Functional Lipopolysaccharide Receptor Complex.
J. J. Y. Chui, M. W. M. Li, N. Di Girolamo, J. H. Chang, P. J. McCluskey, and D. Wakefield (2010)
Invest. Ophthalmol. Vis. Sci. 51, 2558-2567
   Abstract »    Full Text »    PDF »
MD-2-mediated Ionic Interactions between Lipid A and TLR4 Are Essential for Receptor Activation.
J. Meng, E. Lien, and D. T. Golenbock (2010)
J. Biol. Chem. 285, 8695-8702
   Abstract »    Full Text »    PDF »
Novel Roles of Lysines 122, 125, and 58 in Functional Differences between Human and Murine MD-2.
J. Vasl, A. Oblak, T. L. Gioannini, J. P. Weiss, and R. Jerala (2009)
J. Immunol. 183, 5138-5145
   Abstract »    Full Text »    PDF »
Cooperation between PU.1 and CAAT/Enhancer-binding Protein {beta} Is Necessary to Induce the Expression of the MD-2 Gene.
P. Tissieres, T. Araud, A. Ochoda, G. Drifte, I. Dunn-Siegrist, and J. Pugin (2009)
J. Biol. Chem. 284, 26261-26272
   Abstract »    Full Text »    PDF »
Natural Phosphoryl and Acyl Variants of Lipid A from Neisseria meningitidis Strain 89I Differentially Induce Tumor Necrosis Factor-{alpha} in Human Monocytes.
C. M. John, M. Liu, and G. A. Jarvis (2009)
J. Biol. Chem. 284, 21515-21525
   Abstract »    Full Text »    PDF »
Free Thiol Group of MD-2 as the Target for Inhibition of the Lipopolysaccharide-induced Cell Activation.
M. Mancek-Keber, H. Gradisar, M. I. Pestana, G. M. de Tejada, and R. Jerala (2009)
J. Biol. Chem. 284, 19493-19500
   Abstract »    Full Text »    PDF »
Lipopolysaccharide-Trap-Fc, a Multifunctional Agent To Battle Gram-Negative Bacteria.
P. Gross, K. Brandl, C. Dierkes, J. Scholmerich, B. Salzberger, T. Gluck, and W. Falk (2009)
Infect. Immun. 77, 2925-2931
   Abstract »    Full Text »    PDF »
Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer.
L. A. J. O'Neill, C. E. Bryant, and S. L. Doyle (2009)
Pharmacol. Rev. 61, 177-197
   Abstract »    Full Text »    PDF »
Essential Roles of Hydrophobic Residues in Both MD-2 and Toll-like Receptor 4 in Activation by Endotoxin.
N. Resman, J. Vasl, A. Oblak, P. Pristovsek, T. L. Gioannini, J. P. Weiss, and R. Jerala (2009)
J. Biol. Chem. 284, 15052-15060
   Abstract »    Full Text »    PDF »
The roles of TLRs, RLRs and NLRs in pathogen recognition.
T. Kawai and S. Akira (2009)
Int. Immunol. 21, 317-337
   Abstract »    Full Text »    PDF »
Discovery of new biosynthetic pathways: the lipid A story.
C. R. H. Raetz, Z. Guan, B. O. Ingram, D. A. Six, F. Song, X. Wang, and J. Zhao (2009)
J. Lipid Res. 50, S103-S108
   Abstract »    Full Text »    PDF »
Protection from lethal Gram-negative bacterial sepsis by targeting Toll-like receptor 4.
T. Roger, C. Froidevaux, D. Le Roy, M. K. Reymond, A.-L. Chanson, D. Mauri, K. Burns, B. M. Riederer, S. Akira, and T. Calandra (2009)
PNAS 106, 2348-2352
   Abstract »    Full Text »    PDF »
Purification and Characterization of the Lipid A 1-Phosphatase LpxE of Rhizobium leguminosarum.
M. J. Karbarz, D. A. Six, and C. R. H. Raetz (2009)
J. Biol. Chem. 284, 414-425
   Abstract »    Full Text »    PDF »
IL-10 Enhances MD-2 and CD14 Expression in Monocytes and the Proteins Are Increased and Correlated in HIV-Infected Patients.
O. Sandanger, L. Ryan, J. Bohnhorst, A.-C. Iversen, H. Husebye, O. Halaas, L. Landro, P. Aukrust, S. S. Froland, G. Elson, et al. (2009)
J. Immunol. 182, 588-595
   Abstract »    Full Text »    PDF »
Biophysical Characterization of Refolded Drosophila Spatzle, a Cystine Knot Protein, Reveals Distinct Properties of Three Isoforms.
A. Hoffmann, A. Funkner, P. Neumann, S. Juhnke, M. Walther, A. Schierhorn, U. Weininger, J. Balbach, G. Reuter, and M. T. Stubbs (2008)
J. Biol. Chem. 283, 32598-32609
   Abstract »    Full Text »    PDF »
A single base mutation in the PRAT4A gene reveals differential interaction of PRAT4A with Toll-like receptors.
T. Kiyokawa, S. Akashi-Takamura, T. Shibata, F. Matsumoto, C. Nishitani, Y. Kuroki, Y. Seto, and K. Miyake (2008)
Int. Immunol. 20, 1407-1415
   Abstract »    Full Text »    PDF »
Paclitaxel Binding to Human and Murine MD-2.
S. M. Zimmer, J. Liu, J. L. Clayton, D. S. Stephens, and J. P. Snyder (2008)
J. Biol. Chem. 283, 27916-27926
   Abstract »    Full Text »    PDF »
Unique Properties of the Chicken TLR4/MD-2 Complex: Selective Lipopolysaccharide Activation of the MyD88-Dependent Pathway.
A. M. Keestra and J. P. M. van Putten (2008)
J. Immunol. 181, 4354-4362
   Abstract »    Full Text »    PDF »
A. Teghanemt, R. L. Widstrom, T. L. Gioannini, and J. P. Weiss (2008)
J. Biol. Chem. 283, 21881-21889
   Abstract »    Full Text »    PDF »
Elucidation of the MD-2/TLR4 Interface Required for Signaling by Lipid IVa.
C. Walsh, M. Gangloff, T. Monie, T. Smyth, B. Wei, T. J. McKinley, D. Maskell, N. Gay, and C. Bryant (2008)
J. Immunol. 181, 1245-1254
   Abstract »    Full Text »    PDF »
Functional Activity of MD-2 Polymorphic Variant Is Significantly Different in Soluble and TLR4-Bound Forms: Decreased Endotoxin Binding by G56R MD-2 and Its Rescue by TLR4 Ectodomain.
J. Vasl, P. Prohinar, T. L. Gioannini, J. P. Weiss, and R. Jerala (2008)
J. Immunol. 180, 6107-6115
   Abstract »    Full Text »    PDF »
Phagocytosis and intracellular killing of MD-2 opsonized Gram-negative bacteria depend on TLR4 signaling.
V. Jain, A. Halle, K. A. Halmen, E. Lien, M. Charrel-Dennis, S. Ram, D. T. Golenbock, and A. Visintin (2008)
Blood 111, 4637-4645
   Abstract »    Full Text »    PDF »
Soluble MD-2 is an acute-phase protein and an opsonin for Gram-negative bacteria.
P. Tissieres, I. Dunn-Siegrist, M. Schappi, G. Elson, R. Comte, V. Nobre, and J. Pugin (2008)
Blood 111, 2122-2131
   Abstract »    Full Text »    PDF »
The Differential Impact of Disulfide Bonds and N-Linked Glycosylation on the Stability and Function of CD14.
J. Meng, P. Parroche, D. T. Golenbock, and C. J. McKnight (2008)
J. Biol. Chem. 283, 3376-3384
   Abstract »    Full Text »    PDF »
Sensing Gram-Negative Bacterial Lipopolysaccharides: a Human Disease Determinant?.
R. S. Munford (2008)
Infect. Immun. 76, 454-465
   Full Text »    PDF »
Novel Roles in Human MD-2 of Phenylalanines 121 and 126 and Tyrosine 131 in Activation of Toll-like Receptor 4 by Endotoxin.
A. Teghanemt, F. Re, P. Prohinar, R. Widstrom, T. L. Gioannini, and J. P. Weiss (2008)
J. Biol. Chem. 283, 1257-1266
   Abstract »    Full Text »    PDF »
Transfer of Monomeric Endotoxin from MD-2 to CD14: CHARACTERIZATION AND FUNCTIONAL CONSEQUENCES.
A. Teghanemt, P. Prohinar, T. L. Gioannini, and J. P. Weiss (2007)
J. Biol. Chem. 282, 36250-36256
   Abstract »    Full Text »    PDF »
IMMUNOLOGY: The Shape of Things to Come.
K. A. Fitzgerald and D. T. Golenbock (2007)
Science 316, 1574-1576
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882