Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 316 (5832): 1738-1743

Copyright © 2007 by the American Association for the Advancement of Science

Evolutionary Dynamics of Immune-Related Genes and Pathways in Disease-Vector Mosquitoes

Robert M. Waterhouse,1 Evgenia V. Kriventseva,2,3 Stephan Meister,1 Zhiyong Xi,4 Kanwal S. Alvarez,5 Lyric C. Bartholomay,6 Carolina Barillas-Mury,7 Guowu Bian,5 Stephanie Blandin,8 Bruce M. Christensen,9 Yuemei Dong,4 Haobo Jiang,10 Michael R. Kanost,11 Anastasios C. Koutsos,1 Elena A. Levashina,8 Jianyong Li,12 Petros Ligoxygakis,13 Robert M. MacCallum,1 George F. Mayhew,9 Antonio Mendes,1 Kristin Michel,1 Mike A. Osta,1 Susan Paskewitz,14 Sang Woon Shin,5 Dina Vlachou,1 Lihui Wang,13 Weiqi Wei,15,16 Liangbiao Zheng,15,17 Zhen Zou,10 David W. Severson,18 Alexander S. Raikhel,5 Fotis C. Kafatos,1*{dagger} George Dimopoulos,4* Evgeny M. Zdobnov,3,19,1*{dagger} George K. Christophides1*{dagger}

Abstract: Mosquitoes are vectors of parasitic and viral diseases of immense importance for public health. The acquisition of the genome sequence of the yellow fever and Dengue vector, Aedes aegypti (Aa), has enabled a comparative phylogenomic analysis of the insect immune repertoire: in Aa, the malaria vector Anopheles gambiae (Ag), and the fruit fly Drosophila melanogaster (Dm). Analysis of immune signaling pathways and response modules reveals both conservative and rapidly evolving features associated with different functional gene categories and particular aspects of immune reactions. These dynamics reflect in part continuous readjustment between accommodation and rejection of pathogens and suggest how innate immunity may have evolved.

1 Division of Cell and Molecular Biology, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, UK.
2 Department of Structural Biology and Bioinformatics, University of Geneva Medical School, 1211 Geneva, Switzerland.
3 Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland.
4 Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
5 Department of Entomology and the Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
6 Department of Entomology, Iowa State University, Ames, IA 50011, USA.
7 Laboratory of Malaria and Vector Research, Twinbrook III Facility, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD 20892–8132, USA.
8 CNRS Unité Propre de Recherche 9022, Avenir-Inserm, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
9 Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
10 Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, USA.
11 Department of Biochemistry, Kansas State University, Manhattan, KS 66506, USA.
12 Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA.
13 Department of Biochemistry, University of Oxford, Oxford, UK.
14 Russell Labs, Department of Entomology, University of Wisconsin-Madison, Madison, WI 53706, USA.
15 Yale University School of Medicine, Epidemiology, and Public Health, New Haven, CT 06520, USA.
16 Fujian Center for Prevention and Control of Occupational Disease and Chemical Poisoning, Fujian, China.
17 Institute of Plant Physiology and Ecology, Shanghai, China.
18 Department of Biological Sciences, Center for Global Health and Infectious Diseases, University of Notre Dame, Notre Dame, IN46556, USA.
19 Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: g.christophides{at} (G.K.C.); zdobnov{at} (E.M.Z.); f.kafatos{at} (F.C.K.)

Reduction in Fecundity and Shifts in Cellular Processes by a Native Virus on an Invasive Insect.
B. J. Cassone, A. P. Michel, L. R. Stewart, R. Bansal, M. A. R. Mian, and M. G. Redinbaugh (2014)
Genome Biol Evol 6, 873-885
   Abstract »    Full Text »    PDF »
Gene expression differences underlying genotype-by-genotype specificity in a host-parasite system.
S. M. Barribeau, B. M. Sadd, L. du Plessis, and P. Schmid-Hempel (2014)
PNAS 111, 3496-3501
   Abstract »    Full Text »    PDF »
Understanding the Wolbachia-mediated inhibition of arboviruses in mosquitoes: progress and challenges.
S. M. Rainey, P. Shah, A. Kohl, and I. Dietrich (2014)
J. Gen. Virol. 95, 517-530
   Abstract »    Full Text »    PDF »
Evolution of a Cellular Immune Response in Drosophila: A Phenotypic and Genomic Comparative Analysis.
L. Salazar-Jaramillo, A. Paspati, L. van de Zande, C. J. Vermeulen, T. Schwander, and B. Wertheim (2014)
Genome Biol Evol 6, 273-289
   Abstract »    Full Text »    PDF »
The Genome of Anopheles darlingi, the main neotropical malaria vector.
O. Marinotti, G. C. Cerqueira, L. G. P. de Almeida, M. I. T. Ferro, E. L. d. S. Loreto, A. Zaha, S. M. R. Teixeira, A. R. Wespiser, A. Almeida e Silva, A. D. Schlindwein, et al. (2013)
Nucleic Acids Res. 41, 7387-7400
   Abstract »    Full Text »    PDF »
Evidence for Population-Specific Positive Selection on Immune Genes of Anopheles gambiae.
J. E. Crawford, E. Bischoff, T. Garnier, A. Gneme, K. Eiglmeier, I. Holm, M. M. Riehle, W. M. Guelbeogo, N. Sagnon, B. P. Lazzaro, et al. (2012)
g3 2, 1505-1519
   Abstract »    Full Text »    PDF »
Making connections in insect innate immunity.
M. B. Kingsolver and R. W. Hardy (2012)
PNAS 109, 18639-18640
   Full Text »    PDF »
Epithelial Nitration by a Peroxidase/NOX5 System Mediates Mosquito Antiplasmodial Immunity.
G. d. A. Oliveira, J. Lieberman, and C. Barillas-Mury (2012)
Science 335, 856-859
   Abstract »    Full Text »    PDF »
Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti.
X. Pan, G. Zhou, J. Wu, G. Bian, P. Lu, A. S. Raikhel, and Z. Xi (2012)
PNAS 109, E23-E31
   Abstract »    Full Text »    PDF »
Strain Variation in the Transcriptome of the Dengue Fever Vector, Aedes aegypti.
M. Bonizzoni, W. A. Dunn, C. L. Campbell, K. E. Olson, O. Marinotti, A. A. James, and R. Kulathinal (2012)
g3 2, 103-114
   Abstract »    Full Text »    PDF »
Infection Intensity-Dependent Responses of Anopheles gambiae to the African Malaria Parasite Plasmodium falciparum.
A. M. Mendes, P. H. Awono-Ambene, S. E. Nsango, A. Cohuet, D. Fontenille, F. C. Kafatos, G. K. Christophides, I. Morlais, and D. Vlachou (2011)
Infect. Immun. 79, 4708-4715
   Abstract »    Full Text »    PDF »
Correlating Traits of Gene Retention, Sequence Divergence, Duplicability and Essentiality in Vertebrates, Arthropods, and Fungi.
R. M. Waterhouse, E. M. Zdobnov, and E. V. Kriventseva (2011)
Genome Biol Evol 3, 75-86
   Abstract »    Full Text »    PDF »
Global Analysis of the Transcriptional Response of Whitefly to Tomato Yellow Leaf Curl China Virus Reveals the Relationship of Coevolved Adaptations.
J.-B. Luan, J.-M. Li, N. Varela, Y.-L. Wang, F.-F. Li, Y.-Y. Bao, C.-X. Zhang, S.-S. Liu, and X.-W. Wang (2011)
J. Virol. 85, 3330-3340
   Abstract »    Full Text »    PDF »
OrthoDB: the hierarchical catalog of eukaryotic orthologs in 2011.
R. M. Waterhouse, E. M. Zdobnov, F. Tegenfeldt, J. Li, and E. V. Kriventseva (2011)
Nucleic Acids Res. 39, D283-D288
   Abstract »    Full Text »    PDF »
Profile of Alexander S. Raikhel.
T. H. Davis (2010)
PNAS 107, 22381-22383
   Full Text »    PDF »
Evolutionary Analysis and Expression Profiling of Zebra Finch Immune Genes.
R. Ekblom, L. French, J. Slate, and T. Burke (2010)
Genome Biol Evol 2, 781-790
   Abstract »    Full Text »    PDF »
Pathogenomics of Culex quinquefasciatus and Meta-Analysis of Infection Responses to Diverse Pathogens.
L. C. Bartholomay, R. M. Waterhouse, G. F. Mayhew, C. L. Campbell, K. Michel, Z. Zou, J. L. Ramirez, S. Das, K. Alvarez, P. Arensburger, et al. (2010)
Science 330, 88-90
   Abstract »    Full Text »    PDF »
Blocking of Plasmodium transmission by cooperative action of Cecropin A and Defensin A in transgenic Aedes aegypti mosquitoes.
V. Kokoza, A. Ahmed, S. Woon Shin, N. Okafor, Z. Zou, and A. S. Raikhel (2010)
PNAS 107, 8111-8116
   Abstract »    Full Text »    PDF »
Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae.
S. B. Pinto, F. Lombardo, A. C. Koutsos, R. M. Waterhouse, K. McKay, C. An, C. Ramakrishnan, F. C. Kafatos, and K. Michel (2009)
PNAS 106, 21270-21275
   Abstract »    Full Text »    PDF »
An evolutionary conserved function of the JAK-STAT pathway in anti-dengue defense.
J. A. Souza-Neto, S. Sim, and G. Dimopoulos (2009)
PNAS 106, 17841-17846
   Abstract »    Full Text »    PDF »
Dissecting the Genetic Basis of Resistance to Malaria Parasites in Anopheles gambiae.
S. A. Blandin, R. Wang-Sattler, M. Lamacchia, J. Gagneur, G. Lycett, Y. Ning, E. A. Levashina, and L. M. Steinmetz (2009)
Science 326, 147-150
   Abstract »    Full Text »    PDF »
A Profound Role for the Expansion of Trypsin-Like Serine Protease Family in the Evolution of Hematophagy in Mosquito.
D.-D. Wu, G.-D. Wang, D. M Irwin, and Y.-P. Zhang (2009)
Mol. Biol. Evol. 26, 2333-2341
   Abstract »    Full Text »    PDF »
Two C-type Lectins Cooperate to Defend Anopheles gambiae against Gram-negative Bacteria.
A. K. D. Schnitger, H. Yassine, F. C. Kafatos, and M. A. Osta (2009)
J. Biol. Chem. 284, 17616-17624
   Abstract »    Full Text »    PDF »
Cell-to-Cell Spread of the RNA Interference Response Suppresses Semliki Forest Virus (SFV) Infection of Mosquito Cell Cultures and Cannot Be Antagonized by SFV.
G. Attarzadeh-Yazdi, R. Fragkoudis, Y. Chi, R. W. C. Siu, L. Ulper, G. Barry, J. Rodriguez-Andres, A. A. Nash, M. Bouloy, A. Merits, et al. (2009)
J. Virol. 83, 5735-5748
   Abstract »    Full Text »    PDF »
Anopheles Fibrinogen-related Proteins Provide Expanded Pattern Recognition Capacity against Bacteria and Malaria Parasites.
Y. Dong and G. Dimopoulos (2009)
J. Biol. Chem. 284, 9835-9844
   Abstract »    Full Text »    PDF »
Comparative genomics allows the discovery of cis-regulatory elements in mosquitoes.
D. H. Sieglaff, W. A. Dunn, X. S. Xie, K. Megy, O. Marinotti, and A. A. James (2009)
PNAS 106, 3053-3058
   Abstract »    Full Text »    PDF »
Arabidopsis thaliana Genes Encoding Defense Signaling and Recognition Proteins Exhibit Contrasting Evolutionary Dynamics.
K. S. Caldwell and R. W. Michelmore (2009)
Genetics 181, 671-684
   Abstract »    Full Text »    PDF »
Mosquito RUNX4 in the immune regulation of PPO gene expression and its effect on avian malaria parasite infection.
Z. Zou, S. W. Shin, K. S. Alvarez, G. Bian, V. Kokoza, and A. S. Raikhel (2008)
PNAS 105, 18454-18459
   Abstract »    Full Text »    PDF »
OrthoDB: the hierarchical catalog of eukaryotic orthologs.
E. V. Kriventseva, N. Rahman, O. Espinosa, and E. M. Zdobnov (2008)
Nucleic Acids Res. 36, D271-D275
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882