Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 316 (5833): 1901-1904

Copyright © 2007 by the American Association for the Advancement of Science

Dopamine-Mushroom Body Circuit Regulates Saliency-Based Decision-Making in Drosophila

Ke Zhang,1,2 Jian Zeng Guo,1 Yueqing Peng,1,2 Wang Xi,1,2 Aike Guo1,3*

Abstract: Drosophila melanogaster can make appropriate choices among alternative flight options on the basis of the relative salience of competing visual cues. We show that this choice behavior consists of early and late phases; the former requires activation of the dopaminergic system and mushroom bodies, whereas the latter is independent of these activities. Immunohistological analysis showed that mushroom bodies are densely innervated by dopaminergic axons. Thus, the circuit from the dopamine system to mushroom bodies is crucial for choice behavior in Drosophila.

1 Institute of Neuroscience, Key Laboratory of Neurobiology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS), 320 Yueyang Road, Shanghai 200031, China.
2 Graduate School of Chinese Academy of Sciences, Beijing 100049, China.
3 State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, CAS, 15 Datun Road, Chaoyang District, Beijing 100101, China.

* To whom correspondence should be addressed. E-mail: akguo{at}ion.ac.cn


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Parallel Pathways for Cross-Modal Memory Retrieval in Drosophila.
X. Zhang, Q. Ren, and A. Guo (2013)
J. Neurosci. 33, 8784-8793
   Abstract »    Full Text »    PDF »
Dopaminergic Neurons Encode a Distributed, Asymmetric Representation of Temperature in Drosophila.
S. M. Tomchik (2013)
J. Neurosci. 33, 2166-2176
   Abstract »    Full Text »    PDF »
Tissue-Specific Activation of a Single Gustatory Receptor Produces Opposing Behavioral Responses in Drosophila.
R. M. Joseph and U. Heberlein (2012)
Genetics 192, 521-532
   Abstract »    Full Text »    PDF »
The GABAergic anterior paired lateral neurons facilitate olfactory reversal learning in Drosophila.
Y. Wu, Q. Ren, H. Li, and A. Guo (2012)
Learn. Mem. 19, 478-486
   Abstract »    Full Text »    PDF »
A GABAergic Inhibitory Neural Circuit Regulates Visual Reversal Learning in Drosophila.
Q. Ren, H. Li, Y. Wu, J. Ren, and A. Guo (2012)
J. Neurosci. 32, 11524-11538
   Abstract »    Full Text »    PDF »
An Olfactory Circuit Increases the Fidelity of Visual Behavior.
D. M. Chow, J. C. Theobald, and M. A. Frye (2011)
J. Neurosci. 31, 15035-15047
   Abstract »    Full Text »    PDF »
A behavior-based circuit model of how outcome expectations organize learned behavior in larval Drosophila.
M. Schleyer, T. Saumweber, W. Nahrendorf, B. Fischer, D. von Alpen, D. Pauls, A. Thum, and B. Gerber (2011)
Learn. Mem. 18, 639-653
   Abstract »    Full Text »    PDF »
Dopamine in Drosophila: setting arousal thresholds in a miniature brain.
B. Van Swinderen and R. Andretic (2011)
Proc R Soc B 278, 906-913
   Abstract »    Full Text »    PDF »
Towards a scientific concept of free will as a biological trait: spontaneous actions and decision-making in invertebrates.
B. Brembs (2011)
Proc R Soc B 278, 930-939
   Abstract »    Full Text »    PDF »
Behavioral consequences of dopamine deficiency in the Drosophila central nervous system.
T. Riemensperger, G. Isabel, H. Coulom, K. Neuser, L. Seugnet, K. Kume, M. Iche-Torres, M. Cassar, R. Strauss, T. Preat, et al. (2011)
PNAS 108, 834-839
   Abstract »    Full Text »    PDF »
Generating sparse and selective third-order responses in the olfactory system of the fly.
S. X. Luo, R. Axel, and L. F. Abbott (2010)
PNAS 107, 10713-10718
   Abstract »    Full Text »    PDF »
Distinctive Neuronal Networks and Biochemical Pathways for Appetitive and Aversive Memory in Drosophila Larvae.
K. Honjo and K. Furukubo-Tokunaga (2009)
J. Neurosci. 29, 852-862
   Abstract »    Full Text »    PDF »
Drosophila Egg-Laying Site Selection as a System to Study Simple Decision-Making Processes.
C.-h. Yang, P. Belawat, E. Hafen, L. Y. Jan, and Y.-N. Jan (2008)
Science 319, 1679-1683
   Abstract »    Full Text »    PDF »
Swarm formation in the desert locust Schistocerca gregaria: isolation and NMR analysis of the primary maternal gregarizing agent.
G. A. Miller, M. S. Islam, T. D. W. Claridge, T. Dodgson, and S. J. Simpson (2008)
J. Exp. Biol. 211, 370-376
   Abstract »    Full Text »    PDF »
Neurohormonal and Neuromodulatory Control of Sleep in Drosophila.
K. Foltenyi, R. Andretic, J. W. Newport, and R. J. Greenspan (2007)
Cold Spring Harb Symp Quant Biol 72, 565-571
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882