Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 316 (5833): 1916-1919

Copyright © 2007 by the American Association for the Advancement of Science

Restriction of DNA Replication to the Reductive Phase of the Metabolic Cycle Protects Genome Integrity

Zheng Chen,1 Elizabeth A. Odstrcil,2 Benjamin P. Tu,1 Steven L. McKnight1*

Abstract: When prototrophic yeast cells are cultured under nutrient-limited conditions that mimic growth in the wild, rather than in the high-glucose solutions used in most laboratory studies, they exhibit a robustly periodic metabolic cycle. Over a cycle of 4 to 5 hours, yeast cells rhythmically alternate between glycolysis and respiration. The cell division cycle is tightly constrained to the reductive phase of this yeast metabolic cycle, with DNA replication taking place only during the glycolytic phase. We show that cell cycle mutants impeded in metabolic cycle–directed restriction of cell division exhibit substantial increases in spontaneous mutation rate. In addition, disruption of the gene encoding a DNA checkpoint kinase that couples the cell division cycle to the circadian cycle abolishes synchrony of the metabolic and cell cycles. Thus, circadian, metabolic, and cell division cycles may be coordinated similarly as an evolutionarily conserved means of preserving genome integrity.

1 Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
2 Baylor University Medical Center, Dallas, TX 75246, USA.

* To whom correspondence should be addressed. E-mail: Steven.McKnight{at}UTSouthwestern.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry.
S. B. Haase and C. Wittenberg (2014)
Genetics 196, 65-90
   Abstract »    Full Text »    PDF »
Visible light alters yeast metabolic rhythms by inhibiting respiration.
J. B. Robertson, C. R. Davis, and C. H. Johnson (2013)
PNAS 110, 21130-21135
   Abstract »    Full Text »    PDF »
SUMOylation regulates the SNF1 protein kinase.
K. J. Simpson-Lavy and M. Johnston (2013)
PNAS 110, 17432-17437
   Abstract »    Full Text »    PDF »
Energy Management by Enhanced Glycolysis in G1-phase in Human Colon Cancer Cells In Vitro and In Vivo.
Y. Bao, K. Mukai, T. Hishiki, A. Kubo, M. Ohmura, Y. Sugiura, T. Matsuura, Y. Nagahata, N. Hayakawa, T. Yamamoto, et al. (2013)
Mol. Cancer Res. 11, 973-985
   Abstract »    Full Text »    PDF »
Nutritional Control of Growth and Development in Yeast.
J. R. Broach (2012)
Genetics 192, 73-105
   Abstract »    Full Text »    PDF »
Links between metabolism and cancer.
C. V. Dang (2012)
Genes & Dev. 26, 877-890
   Abstract »    Full Text »    PDF »
Order-of-magnitude Estimates of Latency (Time to Appearance) and Refill Time of a Cancer from a Single Cancer 'Stem' Cell Compared by an Exponential and a Logistic Equation.
K. M. ANDERSON, M. RUBENSTEIN, P. GUINAN, and M. PATEL (2012)
In Vivo 26, 183-189
   Abstract »    Full Text »    PDF »
Metabolic cycling without cell division cycling in respiring yeast.
N. Slavov, J. Macinskas, A. Caudy, and D. Botstein (2011)
PNAS 108, 19090-19095
   Abstract »    Full Text »    PDF »
Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast.
N. Slavov and D. Botstein (2011)
Mol. Biol. Cell 22, 1997-2009
   Abstract »    Full Text »    PDF »
Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis.
J. F. Barger and D. R. Plas (2010)
Endocr. Relat. Cancer 17, R287-R304
   Abstract »    Full Text »    PDF »
Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.
S. J. Silverman, A. A. Petti, N. Slavov, L. Parsons, R. Briehof, S. Y. Thiberge, D. Zenklusen, S. J. Gandhi, D. R. Larson, R. H. Singer, et al. (2010)
PNAS 107, 6946-6951
   Abstract »    Full Text »    PDF »
Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation.
E. M. Ozbudak, O. Tassy, and O. Pourquie (2010)
PNAS 107, 4224-4229
   Abstract »    Full Text »    PDF »
Circadian Proteins and Genotoxic Stress Response.
M. P. Antoch and R. V. Kondratov (2010)
Circ. Res. 106, 68-78
   Abstract »    Full Text »    PDF »
Growth-limiting Intracellular Metabolites in Yeast Growing under Diverse Nutrient Limitations.
V. M. Boer, C. A. Crutchfield, P. H. Bradley, D. Botstein, and J. D. Rabinowitz (2010)
Mol. Biol. Cell 21, 198-211
   Abstract »    Full Text »    PDF »
In Vitro Effects of Dichloroacetate and CO2 on Hypoxic HeLa Cells.
K. M. ANDERSON, J. JAJEH, P. GUINAN, and M. RUBENSTEIN (2009)
Anticancer Res 29, 4579-4588
   Abstract »    Full Text »    PDF »
Feeding the Clock.
D. M. Suter and U. Schibler (2009)
Science 326, 378-379
   Abstract »    Full Text »    PDF »
Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation.
M. G. Vander Heiden, L. C. Cantley, and C. B. Thompson (2009)
Science 324, 1029-1033
   Abstract »    Full Text »    PDF »
Coordination of Growth Rate, Cell Cycle, Stress Response, and Metabolic Activity in Yeast.
M. J. Brauer, C. Huttenhower, E. M. Airoldi, R. Rosenstein, J. C. Matese, D. Gresham, V. M. Boer, O. G. Troyanskaya, and D. Botstein (2008)
Mol. Biol. Cell 19, 352-367
   Abstract »    Full Text »    PDF »
Dynamical quorum sensing: Population density encoded in cellular dynamics.
S. De Monte, F. d'Ovidio, S. Dano, and P. G. Sorensen (2007)
PNAS 104, 18377-18381
   Abstract »    Full Text »    PDF »
Cyclic changes in metabolic state during the life of a yeast cell.
B. P. Tu, R. E. Mohler, J. C. Liu, K. M. Dombek, E. T. Young, R. E. Synovec, and S. L. McKnight (2007)
PNAS 104, 16886-16891
   Abstract »    Full Text »    PDF »
The Yeast Metabolic Cycle: Insights into the Life of a Eukaryotic Cell.
B. P. Tu and S. L. McKnight (2007)
Cold Spring Harb Symp Quant Biol 72, 339-343
   Abstract »    PDF »
Cross-talks between Circadian Timing System and Cell Division Cycle Determine Cancer Biology and Therapeutics.
F. Levi, E. Filipski, I. Iurisci, X. M. Li, and P. Innominato (2007)
Cold Spring Harb Symp Quant Biol 72, 465-475
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882