Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 317 (5835): 239-242

Copyright © 2007 by the American Association for the Advancement of Science

Mechanism of Two Classes of Cancer Mutations in the Phosphoinositide 3-Kinase Catalytic Subunit

Nabil Miled,1*{dagger} Ying Yan,2* Wai-Ching Hon,1 Olga Perisic,1 Marketa Zvelebil,3 Yuval Inbar,4 Dina Schneidman-Duhovny,4 Haim J. Wolfson,4 Jonathan M. Backer,2{ddagger} Roger L. Williams1{ddagger}

Abstract: Many human cancers involve up-regulation of the phosphoinositide 3-kinase PI3K{alpha}, with oncogenic mutations identified in both the p110{alpha} catalytic and the p85{alpha} regulatory subunits. We used crystallographic and biochemical approaches to gain insight into activating mutations in two noncatalytic p110{alpha} domains—the adaptor-binding and the helical domains. A structure of the adaptor-binding domain of p110{alpha} in a complex with the p85{alpha} inter–Src homology 2 (inter-SH2) domain shows that oncogenic mutations in the adaptor-binding domain are not at the inter-SH2 interface but in a polar surface patch that is a plausible docking site for other domains in the holo p110/p85 complex. We also examined helical domain mutations and found that the Glu545 to Lys545 (E545K) oncogenic mutant disrupts an inhibitory charge-charge interaction with the p85 N-terminal SH2 domain. These studies extend our understanding of the architecture of PI3Ks and provide insight into how two classes of mutations that cause a gain in function can lead to cancer.

1 Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
2 Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY10461, USA.
3 Ludwig Institute for Cancer Research, University College London, London W1W 7BS, UK.
4 School of Computer Science, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel.

* These authors contributed equally to this work.

{dagger} Present address: Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingenieurs Sfax, Route Soukra BPW, 3038 Sfax, Tunisia.

{ddagger} To whom correspondence should be addressed. E-mail: rlw{at}mrc-lmb.cam.ac.uk (R.L.W.); backer{at}aecom.yu.edu (J.M.B.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The Structural Basis of PI3K Cancer Mutations: From Mechanism to Therapy.
S. Liu, S. Knapp, and A. A. Ahmed (2014)
Cancer Res. 74, 641-646
   Abstract »    Full Text »    PDF »
Targeting the Protein-Protein Interaction between IRS1 and Mutant p110{alpha} for Cancer Therapy.
Y. Hao, S. Zhao, and Z. Wang (2014)
Toxicol Pathol 42, 140-147
   Abstract »    Full Text »    PDF »
Molecular determinants of PI3K{gamma}-mediated activation downstream of G-protein-coupled receptors (GPCRs).
O. Vadas, H. A. Dbouk, A. Shymanets, O. Perisic, J. E. Burke, W. F. Abi Saab, B. D. Khalil, C. Harteneck, A. R. Bresnick, B. Nurnberg, et al. (2013)
PNAS 110, 18862-18867
   Abstract »    Full Text »    PDF »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Conditional Loss of ErbB3 Delays Mammary Gland Hyperplasia Induced by Mutant PIK3CA without Affecting Mammary Tumor Latency, Gene Expression, or Signaling.
C. D. Young, A. D. Pfefferle, P. Owens, M. G. Kuba, B. N. Rexer, J. M. Balko, V. Sanchez, H. Cheng, C. M. Perou, J. J. Zhao, et al. (2013)
Cancer Res. 73, 4075-4085
   Abstract »    Full Text »    PDF »
Characterization of Heparanase-induced Phosphatidylinositol 3-Kinase-AKT Activation and Its Integrin Dependence.
A. Riaz, N. Ilan, I. Vlodavsky, J.-P. Li, and S. Johansson (2013)
J. Biol. Chem. 288, 12366-12375
   Abstract »    Full Text »    PDF »
Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly.
J. J. Rios, N. Paria, D. K. Burns, B. A. Israel, R. Cornelia, C. A. Wise, and M. Ezaki (2013)
Hum. Mol. Genet. 22, 444-451
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-Kinase and Rab5 GTPase Inversely Regulate the Smad Anchor for Receptor Activation (SARA) Protein Independently of Transforming Growth Factor-{beta}1.
C. E. Runyan, Z. Liu, and H. W. Schnaper (2012)
J. Biol. Chem. 287, 35815-35824
   Abstract »    Full Text »    PDF »
Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110{alpha} (PIK3CA).
J. E. Burke, O. Perisic, G. R. Masson, O. Vadas, and R. L. Williams (2012)
PNAS 109, 15259-15264
   Abstract »    Full Text »    PDF »
Common PIK3CA Mutants and a Novel 3' UTR Mutation Are Associated with Increased Sensitivity to Saracatinib.
J. J. Arcaroli, K. S. Quackenbush, R. W. Powell, T. M. Pitts, A. Spreafico, M. Varella-Garcia, L. Bemis, A. C. Tan, J. M. Reinemann, B. M. Touban, et al. (2012)
Clin. Cancer Res. 18, 2704-2714
   Abstract »    Full Text »    PDF »
Coexistence of PIK3CA and Other Oncogene Mutations in Lung Adenocarcinoma-Rationale for Comprehensive Mutation Profiling.
J. E. Chaft, M. E. Arcila, P. K. Paik, C. Lau, G. J. Riely, M. C. Pietanza, M. F. Zakowski, V. Rusch, C. S. Sima, M. Ladanyi, et al. (2012)
Mol. Cancer Ther. 11, 485-491
   Abstract »    Full Text »    PDF »
PI3K{delta} Inhibitors in Cancer: Rationale and Serendipity Merge in the Clinic.
D. A. Fruman and C. Rommel (2011)
Cancer Discovery 1, 562-572
   Abstract »    Full Text »    PDF »
Structural Basis for Activation and Inhibition of Class I Phosphoinositide 3-Kinases.
O. Vadas, J. E. Burke, X. Zhang, A. Berndt, and R. L. Williams (2011)
Science Signaling 4, re2
   Abstract »    Full Text »    PDF »
Using Tandem Mass Spectrometry in Targeted Mode to Identify Activators of Class IA PI3K in Cancer.
X. Yang, A. B. Turke, J. Qi, Y. Song, B. N. Rexer, T. W. Miller, P. A. Janne, C. L. Arteaga, L. C. Cantley, J. A. Engelman, et al. (2011)
Cancer Res. 71, 5965-5975
   Abstract »    Full Text »    PDF »
Inhibition of PI3K binding to activators by serine phosphorylation of PI3K regulatory subunit p85{alpha} Src homology-2 domains.
J. Y. Lee, Y.-H. Chiu, J. Asara, and L. C. Cantley (2011)
PNAS 108, 14157-14162
   Abstract »    Full Text »    PDF »
PIK3R1 (p85{alpha}) Is Somatically Mutated at High Frequency in Primary Endometrial Cancer.
M. E. Urick, M. L. Rudd, A. K. Godwin, D. Sgroi, M. Merino, and D. W. Bell (2011)
Cancer Res. 71, 4061-4067
   Abstract »    Full Text »    PDF »
Nuclear but Not Cytosolic Phosphoinositide 3-Kinase Beta Has an Essential Function in Cell Survival.
A. Kumar, J. Redondo-Munoz, V. Perez-Garcia, I. Cortes, M. Chagoyen, and A. C. Carrera (2011)
Mol. Cell. Biol. 31, 2122-2133
   Abstract »    Full Text »    PDF »
The Selective Class I PI3K Inhibitor CH5132799 Targets Human Cancers Harboring Oncogenic PIK3CA Mutations.
H. Tanaka, M. Yoshida, H. Tanimura, T. Fujii, K. Sakata, Y. Tachibana, J. Ohwada, H. Ebiike, S. Kuramoto, K. Morita, et al. (2011)
Clin. Cancer Res. 17, 3272-3281
   Abstract »    Full Text »    PDF »
A Unique Spectrum of Somatic PIK3CA (p110{alpha}) Mutations Within Primary Endometrial Carcinomas.
M. L. Rudd, J. C. Price, S. Fogoros, A. K. Godwin, D. C. Sgroi, M. J. Merino, and D. W. Bell (2011)
Clin. Cancer Res. 17, 1331-1340
   Abstract »    Full Text »    PDF »
A biochemical mechanism for the oncogenic potential of the p110{beta} catalytic subunit of phosphoinositide 3-kinase.
H. A. Dbouk, H. Pang, A. Fiser, and J. M. Backer (2010)
PNAS 107, 19897-19902
   Abstract »    Full Text »    PDF »
PI3K/PTEN/Akt pathway status affects the sensitivity of high-grade glioma cell cultures to the insulin-like growth factor-1 receptor inhibitor NVP-AEW541.
D. Hagerstrand, M. B. Lindh, C. Pena, C. Garcia-Echeverria, M. Nister, F. Hofmann, and A. Ostman (2010)
Neuro Oncology 12, 967-975
   Abstract »    Full Text »    PDF »
Cancer-derived mutations in the regulatory subunit p85{alpha} of phosphoinositide 3-kinase function through the catalytic subunit p110{alpha}.
M. Sun, P. Hillmann, B. T. Hofmann, J. R. Hart, and P. K. Vogt (2010)
PNAS 107, 15547-15552
   Abstract »    Full Text »    PDF »
New Strategies in Colorectal Cancer: Biomarkers of Response to Epidermal Growth Factor Receptor Monoclonal Antibodies and Potential Therapeutic Targets in Phosphoinositide 3-Kinase and Mitogen-Activated Protein Kinase Pathways.
A. Dasari and W. A. Messersmith (2010)
Clin. Cancer Res. 16, 3811-3818
   Abstract »    Full Text »    PDF »
Predictive Biomarkers of Sensitivity to the Phosphatidylinositol 3' Kinase Inhibitor GDC-0941 in Breast Cancer Preclinical Models.
C. O'Brien, J. J. Wallin, D. Sampath, D. GuhaThakurta, H. Savage, E. A. Punnoose, J. Guan, L. Berry, W. W. Prior, L. C. Amler, et al. (2010)
Clin. Cancer Res. 16, 3670-3683
   Abstract »    Full Text »    PDF »
The Phosphoinositide 3-Kinase Regulatory Subunit p85{alpha} Can Exert Tumor Suppressor Properties through Negative Regulation of Growth Factor Signaling.
C. M. Taniguchi, J. Winnay, T. Kondo, R. T. Bronson, A. R. Guimaraes, J. O. Aleman, J. Luo, G. Stephanopoulos, R. Weissleder, L. C. Cantley, et al. (2010)
Cancer Res. 70, 5305-5315
   Abstract »    Full Text »    PDF »
Disulfiram Treatment Facilitates Phosphoinositide 3-Kinase Inhibition in Human Breast Cancer Cells In vitro and In vivo.
H. Zhang, D. Chen, J. Ringler, W. Chen, Q. C. Cui, S. P. Ethier, Q. P. Dou, and G. Wu (2010)
Cancer Res. 70, 3996-4004
   Abstract »    Full Text »    PDF »
The PI3K Pathway As Drug Target in Human Cancer.
K. D. Courtney, R. B. Corcoran, and J. A. Engelman (2010)
J. Clin. Oncol. 28, 1075-1083
   Abstract »    Full Text »    PDF »
Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein.
B. G. Hale, P. S. Kerry, D. Jackson, B. L. Precious, A. Gray, M. J. Killip, R. E. Randall, and R. J. Russell (2010)
PNAS 107, 1954-1959
   Abstract »    Full Text »    PDF »
Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110{alpha} and are disrupted in oncogenic p85 mutants.
H. Wu, S. C. Shekar, R. J. Flinn, M. El-Sibai, B. S. Jaiswal, K. I. Sen, V. Janakiraman, S. Seshagiri, G. J. Gerfen, M. E. Girvin, et al. (2009)
PNAS 106, 20258-20263
   Abstract »    Full Text »    PDF »
Differential Enhancement of Breast Cancer Cell Motility and Metastasis by Helical and Kinase Domain Mutations of Class IA Phosphoinositide 3-Kinase.
H. Pang, R. Flinn, A. Patsialou, J. Wyckoff, E. T. Roussos, H. Wu, M. Pozzuto, S. Goswami, J. S. Condeelis, A. R. Bresnick, et al. (2009)
Cancer Res. 69, 8868-8876
   Abstract »    Full Text »    PDF »
Emerging common themes in regulation of PIKKs and PI3Ks.
H. Lempiainen and T. D. Halazonetis (2009)
EMBO J. 28, 3067-3073
   Abstract »    Full Text »    PDF »
A frequent kinase domain mutation that changes the interaction between PI3K{alpha} and the membrane.
D. Mandelker, S. B. Gabelli, O. Schmidt-Kittler, J. Zhu, I. Cheong, C.-H. Huang, K. W. Kinzler, B. Vogelstein, and L. M. Amzel (2009)
PNAS 106, 16996-17001
   Abstract »    Full Text »    PDF »
Spectrum of Phosphatidylinositol 3-Kinase Pathway Gene Alterations in Bladder Cancer.
F. M. Platt, C. D. Hurst, C. F. Taylor, W. M. Gregory, P. Harnden, and M. A. Knowles (2009)
Clin. Cancer Res. 15, 6008-6017
   Abstract »    Full Text »    PDF »
PI3K{gamma} Adaptor Subunits Define Coupling to Degranulation and Cell Motility by Distinct PtdIns(3,4,5)P3 Pools in Mast Cells.
T. Bohnacker, R. Marone, E. Collmann, R. Calvez, E. Hirsch, and M. P. Wymann (2009)
Science Signaling 2, ra27
   Abstract »    Full Text »    PDF »
Phosphatidylinositol 3-Kinase-dependent Activation of Mammalian Protein Kinase B/Akt in Saccharomyces cerevisiae, an in Vivo Model for the Functional Study of Akt Mutations.
I. Rodriguez-Escudero, A. Andres-Pons, R. Pulido, M. Molina, and V. J. Cid (2009)
J. Biol. Chem. 284, 13373-13383
   Abstract »    Full Text »    PDF »
Expression and Purification of PI3 Kinase {alpha} and Development of an ATP Depletion and an AlphaScreen PI3 Kinase Activity Assay.
B. Boldyreff, T. L. Rasmussen, H. H. Jensen, A. Cloutier, L. Beaudet, P. Roby, and O.-G. Issinger (2008)
J Biomol Screen 13, 1035-1040
   Abstract »    PDF »
Phosphatidylinositol 3-Kinase Hyperactivation Results in Lapatinib Resistance that Is Reversed by the mTOR/Phosphatidylinositol 3-Kinase Inhibitor NVP-BEZ235.
P. J.A. Eichhorn, M. Gili, M. Scaltriti, V. Serra, M. Guzman, W. Nijkamp, R. L. Beijersbergen, V. Valero, J. Seoane, R. Bernards, et al. (2008)
Cancer Res. 68, 9221-9230
   Abstract »    Full Text »    PDF »
Mechanism of Influenza A Virus NS1 Protein Interaction with the p85{beta}, but Not the p85{alpha}, Subunit of Phosphatidylinositol 3-Kinase (PI3K) and Up-regulation of PI3K Activity.
Y. Li, D. H. Anderson, Q. Liu, and Y. Zhou (2008)
J. Biol. Chem. 283, 23397-23409
   Abstract »    Full Text »    PDF »
Class 1A PI3K regulates vessel integrity during development and tumorigenesis.
T. L. Yuan, H. S. Choi, A. Matsui, C. Benes, E. Lifshits, J. Luo, J. V. Frangioni, and L. C. Cantley (2008)
PNAS 105, 9739-9744
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinases p110{alpha} and p110{beta} Regulate Cell Cycle Entry, Exhibiting Distinct Activation Kinetics in G1 Phase.
M. Marques, A. Kumar, I. Cortes, A. Gonzalez-Garcia, C. Hernandez, M. C. Moreno-Ortiz, and A. C. Carrera (2008)
Mol. Cell. Biol. 28, 2803-2814
   Abstract »    Full Text »    PDF »
Helical domain and kinase domain mutations in p110{alpha} of phosphatidylinositol 3-kinase induce gain of function by different mechanisms.
L. Zhao and P. K. Vogt (2008)
PNAS 105, 2652-2657
   Abstract »    Full Text »    PDF »
Binding of Influenza A Virus NS1 Protein to the Inter-SH2 Domain of p85 Suggests a Novel Mechanism for Phosphoinositide 3-Kinase Activation.
B. G. Hale, I. H. Batty, C. P. Downes, and R. E. Randall (2008)
J. Biol. Chem. 283, 1372-1380
   Abstract »    Full Text »    PDF »
The Structure of a Human p110{alpha}/p85{alpha} Complex Elucidates the Effects of Oncogenic PI3K{alpha} Mutations.
C.-H. Huang, D. Mandelker, O. Schmidt-Kittler, Y. Samuels, V. E. Velculescu, K. W. Kinzler, B. Vogelstein, S. B. Gabelli, and L. M. Amzel (2007)
Science 318, 1744-1748
   Abstract »    Full Text »    PDF »
BIOCHEMISTRY: PI3K Charges Ahead.
J. Y. Lee, J. A. Engelman, and L. C. Cantley (2007)
Science 317, 206-207
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882