Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 317 (5835): 245-248

Copyright © 2007 by the American Association for the Advancement of Science

DNA Double-Strand Breaks Trigger Genome-Wide Sister-Chromatid Cohesion Through Eco1 (Ctf7)

Elçin Ünal,1,2 Jill M. Heidinger-Pauli,1,2 Douglas Koshland1*

Abstract: Faithful chromosome segregation and repair of DNA double-strand breaks (DSBs) require cohesin, the protein complex that mediates sister-chromatid cohesion. Cohesion between sister chromatids is thought to be generated only during ongoing DNA replication by an obligate coupling between cohesion establishment factors such as Eco1 (Ctf7) and the replisome. Using budding yeast, we challenge this model by showing that cohesion is generated by an Eco1-dependent but replication-independent mechanism in response to DSBs in G2/M. Furthermore, our studies reveal that Eco1 has two functions: a cohesive activity and a conserved acetyltransferase activity, which triggers the generation of cohesion in response to the DSB and the DNA damage checkpoint. Finally, the DSB-induced cohesion is not limited to broken chromosomes but occurs also on unbroken chromosomes, suggesting that the DNA damage checkpoint through Eco1 provides genome-wide protection of chromosome integrity.

1 Carnegie Institution, Howard Hughes Medical Institute, Department of Embryology, 3520 San Martin Drive, Baltimore, MD 21218, USA.
2 Johns Hopkins University, Department of Biology, 3400 North Charles Street, Baltimore, MD 21218, USA.

* To whom correspondence should be addressed. E-mail: koshland{at}ciwemb.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription.
S. Lu, K. K. Lee, B. Harris, B. Xiong, T. Bose, A. Saraf, G. Hattem, L. Florens, C. Seidel, and J. L. Gerton (2014)
EMBO Rep.
   Abstract »    Full Text »    PDF »
Distinct Functions of Human Cohesin-SA1 and Cohesin-SA2 in Double-Strand Break Repair.
X. Kong, A. R. Ball Jr., H. X. Pham, W. Zeng, H.-Y. Chen, J. A. Schmiesing, J.-S. Kim, M. Berns, and K. Yokomori (2014)
Mol. Cell. Biol. 34, 685-698
   Abstract »    Full Text »    PDF »
The Sister Chromatid Cohesion Pathway Suppresses Multiple Chromosome Gain and Chromosome Amplification.
S. Covo, C. M. Puccia, J. L. Argueso, D. A. Gordenin, and M. A. Resnick (2014)
Genetics 196, 373-384
   Abstract »    Full Text »    PDF »
Chromosome Segregation in Budding Yeast: Sister Chromatid Cohesion and Related Mechanisms.
A. L. Marston (2014)
Genetics 196, 31-63
   Abstract »    Full Text »    PDF »
Stress-induced Condensation of Bacterial Genomes Results in Re-pairing of Sister Chromosomes: IMPLICATIONS FOR DOUBLE STRAND DNA BREAK REPAIR.
N. Shechter, L. Zaltzman, A. Weiner, V. Brumfeld, E. Shimoni, Y. Fridmann-Sirkis, and A. Minsky (2013)
J. Biol. Chem. 288, 25659-25667
   Abstract »    Full Text »    PDF »
Cohesin codes - interpreting chromatin architecture and the many facets of cohesin function.
S. Rudra and R. V. Skibbens (2013)
J. Cell Sci. 126, 31-41
   Abstract »    Full Text »    PDF »
Sister Chromatid Cohesion.
J.-M. Peters and T. Nishiyama (2012)
Cold Spring Harb Perspect Biol 4, a011130
   Abstract »    Full Text »    PDF »
Cohesin Acetylation Promotes Sister Chromatid Cohesion Only in Association with the Replication Machinery.
J. Song, A. Lafont, J. Chen, F. M. Wu, K. Shirahige, and S. Rankin (2012)
J. Biol. Chem. 287, 34325-34336
   Abstract »    Full Text »    PDF »
Localization and Regulation of Murine Esco2 During Male and Female Meiosis.
E. B. Evans, C. Hogarth, R. M. Evanoff, D. Mitchell, C. Small, and M. D. Griswold (2012)
Biol Reprod 87, 61
   Abstract »    Full Text »    PDF »
Scc1 sumoylation by Mms21 promotes sister chromatid recombination through counteracting Wapl.
N. Wu, X. Kong, Z. Ji, W. Zeng, P. R. Potts, K. Yokomori, and H. Yu (2012)
Genes & Dev. 26, 1473-1485
   Abstract »    Full Text »    PDF »
Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization.
S. Ghosh, J. M. Gardner, C. J. Smoyer, J. M. Friederichs, J. R. Unruh, B. D. Slaughter, R. Alexander, R. D. Chisholm, K. K. Lee, J. L. Workman, et al. (2012)
Mol. Biol. Cell 23, 2546-2559
   Abstract »    Full Text »    PDF »
Meiotic cohesin complexes are essential for the formation of the axial element in mice.
E. Llano, Y. Herran, I. Garcia-Tunon, C. Gutierrez-Caballero, E. de Alava, J. L. Barbero, J. Schimenti, D. G. de Rooij, M. Sanchez-Martin, and A. M. Pendas (2012)
J. Cell Biol. 197, 877-885
   Abstract »    Full Text »    PDF »
Cohesin-independent segregation of sister chromatids in budding yeast.
V. Guacci and D. Koshland (2012)
Mol. Biol. Cell 23, 729-739
   Abstract »    Full Text »    PDF »
Tight cooperation between Mot1p and NC2{beta} in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA.
G. Spedale, C. A. Meddens, M. J. E. Koster, C. W. Ko, S. R. van Hooff, F. C. P. Holstege, H. T. M. Timmers, and W. W. M. P. Pijnappel (2012)
Nucleic Acids Res. 40, 996-1008
   Abstract »    Full Text »    PDF »
Calpain-1 Cleaves Rad21 To Promote Sister Chromatid Separation.
A. K. Panigrahi, N. Zhang, Q. Mao, and D. Pati (2011)
Mol. Cell. Biol. 31, 4335-4347
   Abstract »    Full Text »    PDF »
RSC Facilitates Rad59-Dependent Homologous Recombination between Sister Chromatids by Promoting Cohesin Loading at DNA Double-Strand Breaks.
J.-H. Oum, C. Seong, Y. Kwon, J.-H. Ji, A. Sid, S. Ramakrishnan, G. Ira, A. Malkova, P. Sung, S. E. Lee, et al. (2011)
Mol. Cell. Biol. 31, 3924-3937
   Abstract »    Full Text »    PDF »
Psm3 Acetylation on Conserved Lysine Residues Is Dispensable for Viability in Fission Yeast but Contributes to Eso1-Mediated Sister Chromatid Cohesion by Antagonizing Wpl1.
A. Feytout, S. Vaur, S. Genier, S. Vazquez, and J.-P. Javerzat (2011)
Mol. Cell. Biol. 31, 1771-1786
   Abstract »    Full Text »    PDF »
The Smc5/6 Complex: More Than Repair?.
A. Kegel and C. Sjogren (2011)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Roles of Vertebrate Smc5 in Sister Chromatid Cohesion and Homologous Recombinational Repair.
A. K. Stephan, M. Kliszczak, H. Dodson, C. Cooley, and C. G. Morrison (2011)
Mol. Cell. Biol. 31, 1369-1381
   Abstract »    Full Text »    PDF »
A new meiosis-specific cohesin complex implicated in the cohesin code for homologous pairing.
K.-i. Ishiguro, J. Kim, S. Fujiyama-Nakamura, S. Kato, and Y. Watanabe (2011)
EMBO Rep. 12, 267-275
   Abstract »    Full Text »    PDF »
Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications.
S. E. Polo and S. P. Jackson (2011)
Genes & Dev. 25, 409-433
   Abstract »    Full Text »    PDF »
Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes.
K. Tachibana-Konwalski, J. Godwin, L. van der Weyden, L. Champion, N. R. Kudo, D. J. Adams, and K. Nasmyth (2010)
Genes & Dev. 24, 2505-2516
   Abstract »    Full Text »    PDF »
The hsSsu72 phosphatase is a cohesin-binding protein that regulates the resolution of sister chromatid arm cohesion.
H.-S. Kim, K.-H. Baek, G.-H. Ha, J.-C. Lee, Y.-N. Kim, J. Lee, H.-Y. Park, N. R. Lee, H. Lee, Y. Cho, et al. (2010)
EMBO J. 29, 3544-3557
   Abstract »    Full Text »    PDF »
Proper Levels of the Arabidopsis Cohesion Establishment Factor CTF7 Are Essential for Embryo and Megagametophyte, But Not Endosperm, Development.
L. Jiang, L. Yuan, M. Xia, and C. A. Makaroff (2010)
Plant Physiology 154, 820-832
   Abstract »    Full Text »    PDF »
Genome-wide Reinforcement of Cohesin Binding at Pre-existing Cohesin Sites in Response to Ionizing Radiation in Human Cells.
B.-J. Kim, Y. Li, J. Zhang, Y. Xi, Y. Li, T. Yang, S. Y. Jung, X. Pan, R. Chen, W. Li, et al. (2010)
J. Biol. Chem. 285, 22784-22792
   Abstract »    Full Text »    PDF »
Mek1 Suppression of Meiotic Double-Strand Break Repair Is Specific to Sister Chromatids, Chromosome Autonomous and Independent of Rec8 Cohesin Complexes.
T. L. Callender and N. M. Hollingsworth (2010)
Genetics 185, 771-782
   Abstract »    Full Text »    PDF »
Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins.
J. J. Griese, G. Witte, and K.-P. Hopfner (2010)
Nucleic Acids Res. 38, 3454-3465
   Abstract »    Full Text »    PDF »
The human intra-S checkpoint response to UVC-induced DNA damage.
W. K. Kaufmann (2010)
Carcinogenesis 31, 751-765
   Abstract »    Full Text »    PDF »
Cohesinopathies, gene expression, and chromatin organization.
T. Bose and J. L. Gerton (2010)
J. Cell Biol. 189, 201-210
   Abstract »    Full Text »    PDF »
Mechanics of DNA bridging by bacterial condensin MukBEF in vitro and in singulo.
Z. M. Petrushenko, Y. Cui, W. She, and V. V. Rybenkov (2010)
EMBO J. 29, 1126-1135
   Abstract »    Full Text »    PDF »
Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion.
A. R. Leman, C. Noguchi, C. Y. Lee, and E. Noguchi (2010)
J. Cell Sci. 123, 660-670
   Abstract »    Full Text »    PDF »
Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex.
S. K. Ghosh, C.-C. Huang, S. Hajra, and M. Jayaram (2010)
Nucleic Acids Res. 38, 570-584
   Abstract »    Full Text »    PDF »
Cohesin promotes the repair of ionizing radiation-induced DNA double-strand breaks in replicated chromatin.
C. Bauerschmidt, C. Arrichiello, S. Burdak-Rothkamm, M. Woodcock, M. A. Hill, D. L. Stevens, and K. Rothkamm (2010)
Nucleic Acids Res. 38, 477-487
   Abstract »    Full Text »    PDF »
Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome.
H. Vega, A. H. Trainer, M. Gordillo, M. Crosier, H. Kayserili, F. Skovby, M. L. G. Uzielli, R. E. Schnur, S. Manouvrier, E. Blair, et al. (2010)
J. Med. Genet. 47, 30-37
   Abstract »    Full Text »    PDF »
Predisposition for TMPRSS2-ERG Fusion in Prostate Cancer by Variants in DNA Repair Genes.
M. Luedeke, C. M. Linnert, M. D. Hofer, H. M. Surowy, A. E. Rinckleb, J. Hoegel, R. Kuefer, M. A. Rubin, W. Vogel, and C. Maier (2009)
Cancer Epidemiol. Biomarkers Prev. 18, 3030-3035
   Abstract »    Full Text »    PDF »
The zinc finger of Eco1 enhances its acetyltransferase activity during sister chromatid cohesion.
I. Onn, V. Guacci, and D. E. Koshland (2009)
Nucleic Acids Res. 37, 6126-6134
   Abstract »    Full Text »    PDF »
Increased sister chromatid cohesion and DNA damage response factor localization at an enzyme-induced DNA double-strand break in vertebrate cells.
H. Dodson and C. G. Morrison (2009)
Nucleic Acids Res. 37, 6054-6063
   Abstract »    Full Text »    PDF »
A matter of choice: the establishment of sister chromatid cohesion.
F. Uhlmann (2009)
EMBO Rep. 10, 1095-1102
   Abstract »    Full Text »    PDF »
The cohesin complex is required for the DNA damage-induced G2/M checkpoint in mammalian cells.
E. Watrin and J.-M. Peters (2009)
EMBO J. 28, 2625-2635
   Abstract »    Full Text »    PDF »
The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 Complex Promotes Sister Chromatid Alignment and Homologous Recombination after DNA Damage in Arabidopsis thaliana.
K. Watanabe, M. Pacher, S. Dukowic, V. Schubert, H. Puchta, and I. Schubert (2009)
PLANT CELL 21, 2688-2699
   Abstract »    Full Text »    PDF »
Smc5-Smc6-Dependent Removal of Cohesin from Mitotic Chromosomes.
E. A. Outwin, A. Irmisch, J. M. Murray, and M. J. O'Connell (2009)
Mol. Cell. Biol. 29, 4363-4375
   Abstract »    Full Text »    PDF »
Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells.
J. V. Tjeertes, K. M. Miller, and S. P. Jackson (2009)
EMBO J. 28, 1878-1889
   Abstract »    Full Text »    PDF »
Mechanisms that regulate localization of a DNA double-strand break to the nuclear periphery.
P. Oza, S. L. Jaspersen, A. Miele, J. Dekker, and C. L. Peterson (2009)
Genes & Dev. 23, 912-927
   Abstract »    Full Text »    PDF »
Cornelia de Lange syndrome mutations in SMC1A or SMC3 affect binding to DNA.
E. Revenkova, M. L. Focarelli, L. Susani, M. Paulis, M. T. Bassi, L. Mannini, A. Frattini, D. Delia, I. Krantz, P. Vezzoni, et al. (2009)
Hum. Mol. Genet. 18, 418-427
   Abstract »    Full Text »    PDF »
The Evolution of Meiosis From Mitosis.
A. S. Wilkins and R. Holliday (2009)
Genetics 181, 3-12
   Full Text »    PDF »
A handcuff model for the cohesin complex.
N. Zhang, S. G. Kuznetsov, S. K. Sharan, K. Li, P. H. Rao, and D. Pati (2008)
J. Cell Biol. 183, 1019-1031
   Abstract »    Full Text »    PDF »
The cohesin complex and its roles in chromosome biology.
J.-M. Peters, A. Tedeschi, and J. Schmitz (2008)
Genes & Dev. 22, 3089-3114
   Abstract »    Full Text »    PDF »
Sister Chromatid Cohesion Role for CDC28-CDK in Saccharomyces cerevisiae.
A. Brands and R. V. Skibbens (2008)
Genetics 180, 7-16
   Abstract »    Full Text »    PDF »
Eco1-Dependent Cohesin Acetylation During Establishment of Sister Chromatid Cohesion.
T. R. Ben-Shahar, S. Heeger, C. Lehane, P. East, H. Flynn, M. Skehel, and F. Uhlmann (2008)
Science 321, 563-566
   Abstract »    Full Text »    PDF »
A Molecular Determinant for the Establishment of Sister Chromatid Cohesion.
E. Unal, J. M. Heidinger-Pauli, W. Kim, V. Guacci, I. Onn, S. P. Gygi, and D. E. Koshland (2008)
Science 321, 566-569
   Abstract »    Full Text »    PDF »
The molecular mechanism underlying Roberts syndrome involves loss of ESCO2 acetyltransferase activity.
M. Gordillo, H. Vega, A. H. Trainer, F. Hou, N. Sakai, R. Luque, H. Kayserili, S. Basaran, F. Skovby, R. C. M. Hennekam, et al. (2008)
Hum. Mol. Genet. 17, 2172-2180
   Abstract »    Full Text »    PDF »
Chromosome cohesion - rings, knots, orcs and fellowship.
L. A. Diaz-Martinez, J. F. Gimenez-Abian, and D. J. Clarke (2008)
J. Cell Sci. 121, 2107-2114
   Abstract »    Full Text »    PDF »
Cell-cycle regulation of cohesin stability along fission yeast chromosomes.
P. Bernard, C. K. Schmidt, S. Vaur, S. Dheur, J. Drogat, S. Genier, K. Ekwall, F. Uhlmann, and J.-P. Javerzat (2008)
EMBO J. 27, 111-121
   Abstract »    Full Text »    PDF »
Transcription Alters Chromosomal Locations of Cohesin in Saccharomyces cerevisiae.
C. Bausch, S. Noone, J. M. Henry, K. Gaudenz, B. Sanderson, C. Seidel, and J. L. Gerton (2007)
Mol. Cell. Biol. 27, 8522-8532
   Abstract »    Full Text »    PDF »
MOLECULAR BIOLOGY: How and When the Genome Sticks Together.
E. Watrin and J.-M. Peters (2007)
Science 317, 209-210
   Abstract »    Full Text »    PDF »
Postreplicative Formation of Cohesion Is Required for Repair and Induced by a Single DNA Break.
L. Strom, C. Karlsson, H. B. Lindroos, S. Wedahl, Y. Katou, K. Shirahige, and C. Sjogren (2007)
Science 317, 242-245
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882