Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 317 (5836): 376-381

Copyright © 2007 by the American Association for the Advancement of Science

Host Immune System Gene Targeting by a Viral miRNA

Noam Stern-Ginossar,1* Naama Elefant,2* Albert Zimmermann,3 Dana G. Wolf,4 Nivin Saleh,4 Moshe Biton,1 Elad Horwitz,1 Zafnat Prokocimer,1 Mark Prichard,5 Gabriele Hahn,6{dagger} Debra Goldman-Wohl,7 Caryn Greenfield,7 Simcha Yagel,7 Hartmut Hengel,3 Yael Altuvia,2{ddagger} Hanah Margalit,2*{ddagger} Ofer Mandelboim1*{ddagger}

Abstract: Virally encoded microRNAs (miRNAs) have recently been discovered in herpesviruses. However, their biological roles are mostly unknown. We developed an algorithm for the prediction of miRNA targets and applied it to human cytomegalovirus miRNAs, resulting in the identification of the major histocompatibility complex class I–related chain B (MICB) gene as a top candidate target of hcmv-miR-UL112. MICB is a stress-induced ligand of the natural killer (NK) cell activating receptor NKG2D and is critical for the NK cell killing of virus-infected cells and tumor cells. We show that hcmv-miR-UL112 specifically down-regulates MICB expression during viral infection, leading to decreased binding of NKG2D and reduced killing by NK cells. Our results reveal a miRNA-based immunoevasion mechanism that appears to be exploited by human cytomegalovirus.

1 Lautenberg Center for General and Tumor Immunology, Hebrew University Hadassah Medical School, Jerusalem, Israel.
2 Department of Molecular Genetics and Biotechnology, Hebrew University Hadassah Medical School, Jerusalem, Israel.
3 Institute for Virology, Heinrich Heine University, D40225 Düsseldorf, Germany.
4 Department of Clinical Microbiology and Infectious Diseases, Hadassah University Hospital, Jerusalem, Israel.
5 Department of Pediatrics, University of Alabama, Birmingham, AL 35233, USA
6 Max von Pettenkofer Institut, Department of Virology, D80336 Munich, Germany.
7 Department of Obstetrics and Gynecology, Hadassah Hebrew University Hospital Mount Scopus, Jerusalem, Israel.

* These authors contributed equally to this work.

{dagger} Present address: Klinikum Ingolstadt, Institut für Laboratoriumsmedizin, D84049 Ingolstadt, Germany.

{ddagger} To whom correspondence should be addressed. E-mail: yaelal{at}md.huji.ac.il (Y.A.); hanahm{at}ekmd.huji.ac.il (H.M.); oferm{at}ekmd.huji.ac.il (O.M.)


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Human cytomegalovirus suppresses Fas expression and function.
S. Seirafian, V. Prod'homme, D. Sugrue, J. Davies, C. Fielding, P. Tomasec, and G. W. G. Wilkinson (2014)
J. Gen. Virol. 95, 933-939
   Abstract »    Full Text »    PDF »
Influenza Virus Uses Its Neuraminidase Protein to Evade the Recognition of Two Activating NK Cell Receptors.
Y. Bar-On, E. Seidel, P. Tsukerman, M. Mandelboim, and O. Mandelboim (2014)
The Journal of Infectious Disease
   Abstract »    Full Text »    PDF »
Involvement of Viral MicroRNA in the Regulation of Antiviral Apoptosis in Shrimp.
T. Huang, Y. Cui, X. Zhang, and S. R. Ross (2014)
J. Virol. 88, 2544-2554
   Abstract »    Full Text »    PDF »
Viral MicroRNAs Targeting Virus Genes Promote Virus Infection in Shrimp In Vivo.
Y. He, K. Yang, and X. Zhang (2014)
J. Virol. 88, 1104-1112
   Abstract »    Full Text »    PDF »
Sites under positive selection modulate the RNA silencing suppressor activity of rice yellow mottle virus movement protein P1.
D. Sereme, S. Lacombe, M. Konate, M. Bangratz, A. Pinel-Galzi, D. Fargette, A. S. Traore, G. Konate, and C. Brugidou (2014)
J. Gen. Virol. 95, 213-218
   Abstract »    Full Text »    PDF »
RNA viruses and microRNAs: challenging discoveries for the 21st century.
G. Swaminathan, J. Martin-Garcia, and S. Navas-Martin (2013)
Physiol Genomics 45, 1035-1048
   Abstract »    Full Text »    PDF »
Overexpression of microRNA gga-miR-1650 decreases the replication of avian leukosis virus subgroup J in infected cells.
Q. Wang, X. Ji, Y. Gao, X. Qi, X. Wang, Y. Wang, L. Qin, H. Gao, and X. Wang (2013)
J. Gen. Virol. 94, 2287-2296
   Abstract »    Full Text »    PDF »
Inflammatory Cytokine-Mediated Evasion of Virus-Induced Tumors from NK Cell Control.
R. Mishra, B. Polic, R. M. Welsh, and E. Szomolanyi-Tsuda (2013)
J. Immunol. 191, 961-970
   Abstract »    Full Text »    PDF »
Non-coding RNAs in homeostasis, disease and stress responses: an evolutionary perspective.
P. P. Amaral, M. E. Dinger, and J. S. Mattick (2013)
Briefings in Functional Genomics 12, 254-278
   Abstract »    Full Text »    PDF »
Mouse Tumor Vasculature Expresses NKG2D Ligands and Can Be Targeted by Chimeric NKG2D-Modified T Cells.
T. Zhang and C. L. Sentman (2013)
J. Immunol. 190, 2455-2463
   Abstract »    Full Text »    PDF »
Crystal Structure of the Cowpox Virus-Encoded NKG2D Ligand OMCP.
E. Lazear, L. W. Peterson, C. A. Nelson, and D. H. Fremont (2013)
J. Virol. 87, 840-850
   Abstract »    Full Text »    PDF »
MiR-10b Downregulates the Stress-Induced Cell Surface Molecule MICB, a Critical Ligand for Cancer Cell Recognition by Natural Killer Cells.
P. Tsukerman, N. Stern-Ginossar, C. Gur, A. Glasner, D. Nachmani, Y. Bauman, R. Yamin, A. Vitenshtein, N. Stanietsky, T. Bar-Mag, et al. (2012)
Cancer Res. 72, 5463-5472
   Abstract »    Full Text »    PDF »
Herpes Simplex Virus Is Equipped with RNA- and Protein-Based Mechanisms To Repress Expression of ATRX, an Effector of Intrinsic Immunity.
I. Jurak, L. B. Silverstein, M. Sharma, and D. M. Coen (2012)
J. Virol. 86, 10093-10102
   Abstract »    Full Text »    PDF »
A Baculovirus-Encoded MicroRNA (miRNA) Suppresses Its Host miRNA Biogenesis by Regulating the Exportin-5 Cofactor Ran.
C. P. Singh, J. Singh, and J. Nagaraju (2012)
J. Virol. 86, 7867-7879
   Abstract »    Full Text »    PDF »
BclAF1 restriction factor is neutralized by proteasomal degradation and microRNA repression during human cytomegalovirus infection.
S. H. Lee, R. F. Kalejta, J. Kerry, O. J. Semmes, C. M. O'Connor, Z. Khan, B. A. Garcia, T. Shenk, and E. Murphy (2012)
PNAS 109, 9575-9580
   Abstract »    Full Text »    PDF »
Human cytomegalovirus transcriptome activity differs during replication in human fibroblast, epithelial and astrocyte cell lines.
J. C. Towler, B. Ebrahimi, B. Lane, A. J. Davison, and D. J. Dargan (2012)
J. Gen. Virol. 93, 1046-1058
   Abstract »    Full Text »    PDF »
Two MicroRNAs Encoded within the Bovine Herpesvirus 1 Latency-Related Gene Promote Cell Survival by Interacting with RIG-I and Stimulating NF-{kappa}B-Dependent Transcription and Beta Interferon Signaling Pathways.
L. F. da Silva and C. Jones (2012)
J. Virol. 86, 1670-1682
   Abstract »    Full Text »    PDF »
High-Resolution Profiling and Analysis of Viral and Host Small RNAs during Human Cytomegalovirus Infection.
T. J. Stark, J. D. Arnold, D. H. Spector, and G. W. Yeo (2012)
J. Virol. 86, 226-235
   Abstract »    Full Text »    PDF »
CEACAM1 dampens antitumor immunity by down-regulating NKG2D ligand expression on tumor cells.
Z. Chen, L. Chen, K. Baker, T. Olszak, S. Zeissig, Y.-H. Huang, T. T. Kuo, O. Mandelboim, N. Beauchemin, L. L. Lanier, et al. (2011)
J. Exp. Med. 208, 2633-2640
   Abstract »    Full Text »    PDF »
Modeling of Human Cytomegalovirus Maternal-Fetal Transmission in a Novel Decidual Organ Culture.
Y. Weisblum, A. Panet, Z. Zakay-Rones, R. Haimov-Kochman, D. Goldman-Wohl, I. Ariel, H. Falk, S. Natanson-Yaron, M. D. Goldberg, R. Gilad, et al. (2011)
J. Virol. 85, 13204-13213
   Abstract »    Full Text »    PDF »
Human microRNA-27a* targets Prf1 and GzmB expression to regulate NK-cell cytotoxicity.
T.-D. Kim, S. U. Lee, S. Yun, H.-N. Sun, S. H. Lee, J. W. Kim, H. M. Kim, S.-K. Park, C. W. Lee, S. R. Yoon, et al. (2011)
Blood 118, 5476-5486
   Abstract »    Full Text »    PDF »
Human Cytomegalovirus US7 Is Regulated Synergistically by Two Virally Encoded MicroRNAs and by Two Distinct Mechanisms.
R. Tirabassi, L. Hook, I. Landais, F. Grey, H. Meyers, H. Hewitt, and J. Nelson (2011)
J. Virol. 85, 11938-11944
   Abstract »    Full Text »    PDF »
A wide repertoire of miRNA binding sites: prediction and functional implications.
N. Elefant, Y. Altuvia, and H. Margalit (2011)
Bioinformatics 27, 3093-3101
   Abstract »    Full Text »    PDF »
Viruses and microRNAs: RISCy interactions with serious consequences.
B. R. Cullen (2011)
Genes & Dev. 25, 1881-1894
   Abstract »    Full Text »    PDF »
Characterization of extracellular circulating microRNA.
A. Turchinovich, L. Weiz, A. Langheinz, and B. Burwinkel (2011)
Nucleic Acids Res. 39, 7223-7233
   Abstract »    Full Text »    PDF »
MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2.
T. Shatseva, D. Y. Lee, Z. Deng, and B. B. Yang (2011)
J. Cell Sci. 124, 2826-2836
   Abstract »    Full Text »    PDF »
Signature microRNA Expression Profile of Essential Hypertension and Its Novel Link to Human Cytomegalovirus Infection.
S. Li, J. Zhu, W. Zhang, Y. Chen, K. Zhang, L. M. Popescu, X. Ma, W. Bond Lau, R. Rong, X. Yu, et al. (2011)
Circulation 124, 175-184
   Abstract »    Full Text »    PDF »
Insights into Polyomaviridae MicroRNA Function Derived from Study of the Bandicoot Papillomatosis Carcinomatosis Viruses.
C. J. Chen, R. P. Kincaid, G. J. Seo, M. D. Bennett, and C. S. Sullivan (2011)
J. Virol. 85, 4487-4500
   Abstract »    Full Text »    PDF »
Human Cytomegalovirus Disrupts the Major Histocompatibility Complex Class I Peptide-Loading Complex and Inhibits Tapasin Gene Transcription.
A. Halenius, S. Hauka, L. Dolken, J. Stindt, H. Reinhard, C. Wiek, H. Hanenberg, U. H. Koszinowski, F. Momburg, and H. Hengel (2011)
J. Virol. 85, 3473-3485
   Abstract »    Full Text »    PDF »
NK Cells, Innate Immunity and Hepatitis C Infection after Liver Transplantation.
A. Nellore and J. A. Fishman (2011)
Clinical Infectious Diseases 52, 369-377
   Abstract »    Full Text »    PDF »
NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies.
G. Magri, A. Muntasell, N. Romo, A. Saez-Borderias, D. Pende, D. E. Geraghty, H. Hengel, A. Angulo, A. Moretta, and M. Lopez-Botet (2011)
Blood 117, 848-856
   Abstract »    Full Text »    PDF »
Cytomegalovirus MicroRNA Expression Is Tissue Specific and Is Associated with Persistence.
C. Meyer, F. Grey, C. N. Kreklywich, T. F. Andoh, R. S. Tirabassi, S. L. Orloff, and D. N. Streblow (2011)
J. Virol. 85, 378-389
   Abstract »    Full Text »    PDF »
RepTar: a database of predicted cellular targets of host and viral miRNAs.
N. Elefant, A. Berger, H. Shein, M. Hofree, H. Margalit, and Y. Altuvia (2011)
Nucleic Acids Res. 39, D188-D194
   Abstract »    Full Text »    PDF »
Identification of Novel MicroRNA-Like Molecules Generated from Herpesvirus and Host tRNA Transcripts.
T. A. Reese, J. Xia, L. S. Johnson, X. Zhou, W. Zhang, and H. W. Virgin (2010)
J. Virol. 84, 10344-10353
   Abstract »    Full Text »    PDF »
Chemotherapy-Induced Genotoxic Stress Promotes Sensitivity to Natural Killer Cell Cytotoxicity by Enabling Missing-Self Recognition.
J. H. Fine, P. Chen, A. Mesci, D. S. J. Allan, S. Gasser, D. H. Raulet, and J. R. Carlyle (2010)
Cancer Res. 70, 7102-7113
   Abstract »    Full Text »    PDF »
Human cytomegalovirus UL141 promotes efficient downregulation of the natural killer cell activating ligand CD112.
V. Prod'homme, D. M. Sugrue, R. J. Stanton, A. Nomoto, J. Davies, C. R. Rickards, D. Cochrane, M. Moore, G. W. G. Wilkinson, and P. Tomasec (2010)
J. Gen. Virol. 91, 2034-2039
   Abstract »    Full Text »    PDF »
Killing of Avian and Swine Influenza Virus by Natural Killer Cells.
H. Achdout, T. Meningher, S. Hirsh, A. Glasner, Y. Bar-On, C. Gur, A. Porgador, M. Mendelson, M. Mandelboim, and O. Mandelboim (2010)
J. Virol. 84, 3993-4001
   Abstract »    Full Text »    PDF »
Functional delivery of viral miRNAs via exosomes.
D. M. Pegtel, K. Cosmopoulos, D. A. Thorley-Lawson, M. A. J. van Eijndhoven, E. S. Hopmans, J. L. Lindenberg, T. D. de Gruijl, T. Wurdinger, and J. M. Middeldorp (2010)
PNAS 107, 6328-6333
   Abstract »    Full Text »    PDF »
NKG2D Ligand MICA Is Retained in the cis-Golgi Apparatus by Human Cytomegalovirus Protein UL142.
O. Ashiru, N. J. Bennett, L. H. Boyle, M. Thomas, J. Trowsdale, and M. R. Wills (2009)
J. Virol. 83, 12345-12354
   Abstract »    Full Text »    PDF »
Infection--genetics relationship in systemic lupus erythematosus.
G. D. Sebastiani and M. Galeazzi (2009)
Lupus 18, 1169-1175
   Abstract »    PDF »
Analysis of Human Cytomegalovirus-Encoded MicroRNA Activity during Infection.
N. Stern-Ginossar, N. Saleh, M. D. Goldberg, M. Prichard, D. G. Wolf, and O. Mandelboim (2009)
J. Virol. 83, 10684-10693
   Abstract »    Full Text »    PDF »
The role of RNAi and microRNAs in animal virus replication and antiviral immunity.
J. L. Umbach and B. R. Cullen (2009)
Genes & Dev. 23, 1151-1164
   Abstract »    Full Text »    PDF »
Brief Residence at the Plasma Membrane of the MHC Class I-Related Chain B Is Due to Clathrin-Mediated Cholesterol-Dependent Endocytosis and Shedding.
S. Aguera-Gonzalez, P. Boutet, H. T. Reyburn, and M. Vales-Gomez (2009)
J. Immunol. 182, 4800-4808
   Abstract »    Full Text »    PDF »
Identification of Novel Epstein-Barr Virus MicroRNA Genes from Nasopharyngeal Carcinomas.
J. Y. Zhu, T. Pfuhl, N. Motsch, S. Barth, J. Nicholls, F. Grasser, and G. Meister (2009)
J. Virol. 83, 3333-3341
   Abstract »    Full Text »    PDF »
Cellular versus viral microRNAs in host-virus interaction.
Z. Ghosh, B. Mallick, and J. Chakrabarti (2009)
Nucleic Acids Res. 37, 1035-1048
   Abstract »    Full Text »    PDF »
Two viruses that cause salivary gland hypertrophy in Glossina pallidipes and Musca domestica are related and form a distinct phylogenetic clade.
A. Garcia-Maruniak, A. M. M. Abd-Alla, T. Z. Salem, A. G. Parker, V.-U. Lietze, M. M. van Oers, J. E. Maruniak, W. Kim, J. P. Burand, F. Cousserans, et al. (2009)
J. Gen. Virol. 90, 334-346
   Abstract »    Full Text »    PDF »
The evolution of RNAi as a defence against viruses and transposable elements.
D. J Obbard, K. H.J Gordon, A. H Buck, and F. M Jiggins (2009)
Phil Trans R Soc B 364, 99-115
   Abstract »    Full Text »    PDF »
Immunobiology of Human Cytomegalovirus: from Bench to Bedside.
T. Crough and R. Khanna (2009)
Clin. Microbiol. Rev. 22, 76-98
   Abstract »    Full Text »    PDF »
Cutting Edge: Down-Regulation of MHC Class I-Related Chain A on Tumor Cells by IFN-{gamma}-Induced MicroRNA.
D. Yadav, J. Ngolab, R. S.-H. Lim, S. Krishnamurthy, and J. D. Bui (2009)
J. Immunol. 182, 39-43
   Abstract »    Full Text »    PDF »
An Epstein-Barr virus-encoded microRNA targets PUMA to promote host cell survival.
E. Y.-W. Choy, K.-L. Siu, K.-H. Kok, R. W.-M. Lung, C. M. Tsang, K.-F. To, D. L.-W. Kwong, S. W. Tsao, and D.-Y. Jin (2008)
J. Exp. Med. 205, 2551-2560
   Abstract »    Full Text »    PDF »
Human Cytomegalovirus Infection Alters the Expression of Cellular MicroRNA Species That Affect Its Replication.
F.-Z. Wang, F. Weber, C. Croce, C.-G. Liu, X. Liao, and P. E. Pellett (2008)
J. Virol. 82, 9065-9074
   Abstract »    Full Text »    PDF »
Virus meets RNAi: Symposium on Antiviral Applications of RNA Interference.
R. P. van Rij (2008)
EMBO Rep. 9, 725-729
   Full Text »    PDF »
MicroRNA prediction with a novel ranking algorithm based on random walks.
Y. Xu, X. Zhou, and W. Zhang (2008)
Bioinformatics 24, i50-i58
   Abstract »    Full Text »    PDF »
miRNAs: Effectors of Environmental Influences on Gene Expression and Disease.
A. Hudder and R. F. Novak (2008)
Toxicol. Sci. 103, 228-240
   Abstract »    Full Text »    PDF »
Adenovirus E3/19K Promotes Evasion of NK Cell Recognition by Intracellular Sequestration of the NKG2D Ligands Major Histocompatibility Complex Class I Chain-Related Proteins A and B.
B. P. McSharry, H.-G. Burgert, D. P. Owen, R. J. Stanton, V. Prod'homme, M. Sester, K. Koebernick, V. Groh, T. Spies, S. Cox, et al. (2008)
J. Virol. 82, 4585-4594
   Abstract »    Full Text »    PDF »
Suppression of immediate-early viral gene expression by herpesvirus-coded microRNAs: Implications for latency.
E. Murphy, J. Vanicek, H. Robins, T. Shenk, and A. J. Levine (2008)
PNAS 105, 5453-5458
   Abstract »    Full Text »    PDF »
Profiling killers; unravelling the pathways of human natural killer cell function.
G. B. Scott, J. L. Meade, and G. P. Cook (2008)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Human Cytomegalovirus Regulates Surface Expression of the Viral Protein UL18 by Means of Two Motifs Present in the Cytoplasmic Tail.
M. Maffei, F. Ghiotto, M. Occhino, M. Bono, A. De Santanna, L. Battini, G. L. Gusella, F. Fais, S. Bruno, and E. Ciccone (2008)
J. Immunol. 180, 969-979
   Abstract »    Full Text »    PDF »
Mouse Cytomegalovirus MicroRNAs Dominate the Cellular Small RNA Profile during Lytic Infection and Show Features of Posttranscriptional Regulation.
L. Dolken, J. Perot, V. Cognat, A. Alioua, M. John, J. Soutschek, Z. Ruzsics, U. Koszinowski, O. Voinnet, and S. Pfeffer (2007)
J. Virol. 81, 13771-13782
   Abstract »    Full Text »    PDF »
Discrete Clusters of Virus-Encoded MicroRNAs Are Associated with Complementary Strands of the Genome and the 7.2-Kilobase Stable Intron in Murine Cytomegalovirus.
A. H. Buck, J. Santoyo-Lopez, K. A. Robertson, D. S. Kumar, M. Reczko, and P. Ghazal (2007)
J. Virol. 81, 13761-13770
   Abstract »    Full Text »    PDF »
IMMUNOLOGY: Outwitted by Viral RNAs.
B. R. Cullen (2007)
Science 317, 329-330
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882