Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 317 (5837): 510-512

Copyright © 2007 by the American Association for the Advancement of Science

Crystal Structure of Inhibitor-Bound Human 5-Lipoxygenase-Activating Protein

Andrew D. Ferguson,1* Brian M. McKeever,1,5* Shihua Xu,1 Douglas Wisniewski,2 Douglas K. Miller,3,6 Ting-Ting Yamin,3 Robert H. Spencer,4,7 Lin Chu,1 Feroze Ujjainwalla,1 Barry R. Cunningham,2 Jilly F. Evans,3,8 Joseph W. Becker1{dagger}

Abstract: Leukotrienes are proinflammatory products of arachidonic acid oxidation by 5-lipoxygenase that have been shown to be involved in respiratory and cardiovascular diseases. The integral membrane protein FLAP is essential for leukotriene biosynthesis. We describe the x-ray crystal structures of human FLAP in complex with two leukotriene biosynthesis inhibitors at 4.0 and 4.2 angstrom resolution, respectively. The structures show that inhibitors bind in membrane-embedded pockets of FLAP, which suggests how these inhibitors prevent arachidonic acid from binding to FLAP and subsequently being transferred to 5-lipoxygenase, thereby preventing leukotriene biosynthesis. This structural information provides a platform for the development of therapeutics for respiratory and cardiovascular diseases.

1 Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.
2 Department of Infectious Diseases, Merck Research Laboratories, Rahway, NJ 07065, USA.
3 Department of Cardiovascular Diseases, Merck Research Laboratories, Rahway, NJ 07065, USA.
4 Department of Pain Research, Merck Research Laboratories, West Point, PA 19486, USA.
5 Vitae Pharmaceuticals, Fort Washington, PA 19034, USA.
6 Wyeth Research, Collegeville, PA 19426, USA.
7 Cara Therapeutics, Tarrytown, NY 10591, USA.
8 Amira Pharmaceuticals, San Diego, CA 92121, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: joseph_becker{at}

Crystal structure of microsomal prostaglandin E2 synthase provides insight into diversity in the MAPEG superfamily.
T. Sjogren, J. Nord, M. Ek, P. Johansson, G. Liu, and S. Geschwindner (2013)
PNAS 110, 3806-3811
   Abstract »    Full Text »    PDF »
The nuclear membrane leukotriene synthetic complex is a signal integrator and transducer.
A. M. Bair, M. V. Turman, C. A. Vaine, R. A. Panettieri Jr., and R. J. Soberman (2012)
Mol. Biol. Cell 23, 4456-4464
   Abstract »    Full Text »    PDF »
Novel 5-lipoxygenase isoforms affect the biosynthesis of 5-lipoxygenase products.
L. H. Boudreau, J. Bertin, P. P. Robichaud, M. Laflamme, R. J. Ouellette, N. Flamand, and M. E. Surette (2011)
FASEB J 25, 1097-1105
   Abstract »    Full Text »    PDF »
The Structure of Human 5-Lipoxygenase.
N. C. Gilbert, S. G. Bartlett, M. T. Waight, D. B. Neau, W. E. Boeglin, A. R. Brash, and M. E. Newcomer (2011)
Science 331, 217-219
   Abstract »    Full Text »    PDF »
Evidence for activation of inflammatory lipoxygenase pathways in visceral adipose tissue of obese Zucker rats.
S. K. Chakrabarti, Y. Wen, A. D. Dobrian, B. K. Cole, Q. Ma, H. Pei, M. D. Williams, M. H. Bevard, G. E. Vandenhoff, S. R. Keller, et al. (2011)
Am J Physiol Endocrinol Metab 300, E175-E187
   Abstract »    Full Text »    PDF »
Identification of Key Residues Determining Species Differences in Inhibitor Binding of Microsomal Prostaglandin E Synthase-1.
S.-C. Pawelzik, N. R. Uda, L. Spahiu, C. Jegerschold, P. Stenberg, H. Hebert, R. Morgenstern, and P.-J. Jakobsson (2010)
J. Biol. Chem. 285, 29254-29261
   Abstract »    Full Text »    PDF »
Location, Location, Location: Compartmentalization of Early Events in Leukotriene Biosynthesis.
M. E. Newcomer and N. C. Gilbert (2010)
J. Biol. Chem. 285, 25109-25114
   Abstract »    Full Text »    PDF »
Placenta Growth Factor-induced Early Growth Response 1 (Egr-1) Regulates Hypoxia-inducible Factor-1{alpha} (HIF-1{alpha}) in Endothelial Cells.
N. Patel and V. K. Kalra (2010)
J. Biol. Chem. 285, 20570-20579
   Abstract »    Full Text »    PDF »
Hypoxia-Mediated Expression of 5-Lipoxygenase-Activating Protein Involves HIF-1{alpha} and NF-{kappa}B and MicroRNAs 135a and 199a-5p.
C. S. Gonsalves and V. K. Kalra (2010)
J. Immunol. 184, 3878-3888
   Abstract »    Full Text »    PDF »
GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4.
A. Maekawa, B. Balestrieri, K. F. Austen, and Y. Kanaoka (2009)
PNAS 106, 11685-11690
   Abstract »    Full Text »    PDF »
Thematic Review Series: Proteomics. An integrated omics analysis of eicosanoid biology.
M. W. Buczynski, D. S. Dumlao, and E. A. Dennis (2009)
J. Lipid Res. 50, 1015-1038
   Abstract »    Full Text »    PDF »
5-Lipoxygenase: mechanisms of regulation.
O. Radmark and B. Samuelsson (2009)
J. Lipid Res. 50, S40-S45
   Abstract »    Full Text »    PDF »
Mutation of a Critical Arginine in Microsomal Prostaglandin E Synthase-1 Shifts the Isomerase Activity to a Reductase Activity That Converts Prostaglandin H2 into Prostaglandin F2{alpha}.
T. Hammarberg, M. Hamberg, A. Wetterholm, H. Hansson, B. Samuelsson, and J. Z. Haeggstrom (2009)
J. Biol. Chem. 284, 301-305
   Abstract »    Full Text »    PDF »
The nuclear membrane organization of leukotriene synthesis.
A. K. Mandal, P. B. Jones, A. M. Bair, P. Christmas, D. Miller, T.-t. D. Yamin, D. Wisniewski, J. Menke, J. F. Evans, B. T. Hyman, et al. (2008)
PNAS 105, 20434-20439
   Abstract »    Full Text »    PDF »
Leukotriene modifiers in the treatment of cardiovascular diseases.
G. Riccioni, V. Capra, N. D'Orazio, T. Bucciarelli, and L. A. Bazzano (2008)
J. Leukoc. Biol. 84, 1374-1378
   Abstract »    Full Text »    PDF »
Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors.
A. Maekawa, Y. Kanaoka, W. Xing, and K. F. Austen (2008)
PNAS 105, 16695-16700
   Abstract »    Full Text »    PDF »
Structural basis for induced formation of the inflammatory mediator prostaglandin E2.
C. Jegerschold, S.-C. Pawelzik, P. Purhonen, P. Bhakat, K. R. Gheorghe, N. Gyobu, K. Mitsuoka, R. Morgenstern, P.-J. Jakobsson, and H. Hebert (2008)
PNAS 105, 11110-11115
   Abstract »    Full Text »    PDF »
Transmembrane segment enhanced labeling as a tool for the backbone assignment of {alpha}-helical membrane proteins.
S. Reckel, S. Sobhanifar, B. Schneider, F. Junge, D. Schwarz, F. Durst, F. Lohr, P. Guntert, F. Bernhard, and V. Dotsch (2008)
PNAS 105, 8262-8267
   Abstract »    Full Text »    PDF »
Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches.
D. J. Muller, N. Wu, and K. Palczewski (2008)
Pharmacol. Rev. 60, 43-78
   Abstract »    Full Text »    PDF »
High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae.
S. Newstead, H. Kim, G. von Heijne, S. Iwata, and D. Drew (2007)
PNAS 104, 13936-13941
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882