Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 317 (5838): 660-663

Copyright © 2007 by the American Association for the Advancement of Science

Quantitative Mass Spectrometry Identifies Insulin Signaling Targets in C. elegans

Meng-Qiu Dong,1 John D. Venable,1 Nora Au,2,3 Tao Xu,1 Sung Kyu Park,1 Daniel Cociorva,1 Jeffrey R. Johnson,1 Andrew Dillin,2 John R. Yates, III1*

Abstract: DAF-2, an insulin receptor–like protein, regulates metabolism, development, and aging in Caenorhabditis elegans. In a quantitative proteomic study, we identified 86 proteins that were more or less abundant in long-lived daf-2 mutant worms than in wild-type worms. Genetic studies on a subset of these proteins indicated that they act in one or more processes regulated by DAF-2, including entry into the dauer developmental stage and aging. In particular, we discovered a compensatory mechanism activated in response to reduced DAF-2 signaling, which involves the protein phosphatase calcineurin.

1 Scripps Research Institute, La Jolla, CA92037, USA.
2 Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
3 University of California at San Diego, La Jolla, CA 92093, USA.

* To whom correspondence should be addressed. E-mail: jyates{at}scripps.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
DamID in C. elegans reveals longevity-associated targets of DAF-16/FoxO.
E. Schuster, J. J. McElwee, J. M. A. Tullet, R. Doonan, F. Matthijssens, J. S. Reece-Hoyes, I. A. Hope, J. R. Vanfleteren, J. M. Thornton, and D. Gems (2014)
Mol Syst Biol 6, 399
   Abstract »    Full Text »    PDF »
Insulin/IGF-1-mediated longevity is marked by reduced protein metabolism.
G. J. Stout, E. C. A. Stigter, P. B. Essers, K. W. Mulder, A. Kolkman, D. S. Snijders, N. J. F. van den Broek, M. C. Betist, H. C. Korswagen, A. W. MacInnes, et al. (2014)
Mol Syst Biol 9, 679
   Abstract »    Full Text »    PDF »
Proteomic profiling of cardiac tissue by isolation of nuclei tagged in specific cell types (INTACT).
N. M. Amin, T. M. Greco, L. M. Kuchenbrod, M. M. Rigney, M.-I. Chung, J. B. Wallingford, I. M. Cristea, and F. L. Conlon (2014)
Development 141, 962-973
   Abstract »    Full Text »    PDF »
Tear Proteomic Analysis of Patients With Type 2 Diabetes and Dry Eye Syndrome by Two-Dimensional Nano-Liquid Chromatography Coupled With Tandem Mass Spectrometry.
B. Li, M. Sheng, L. Xie, F. Liu, G. Yan, W. Wang, A. Lin, F. Zhao, and Y. Chen (2014)
Invest. Ophthalmol. Vis. Sci. 55, 177-186
   Abstract »    Full Text »    PDF »
Reduced Insulin/Insulin-like Growth Factor-1 Signaling and Dietary Restriction Inhibit Translation but Preserve Muscle Mass in Caenorhabditis elegans.
G. Depuydt, F. Xie, V. A. Petyuk, N. Shanmugam, A. Smolders, I. Dhondt, H. M. Brewer, D. G. Camp II, R. D. Smith, and B. P. Braeckman (2013)
Mol. Cell. Proteomics 12, 3624-3639
   Abstract »    Full Text »    PDF »
CAMKII and Calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16.
L. Tao, Q. Xie, Y.-H. Ding, S.-T. Li, S. Peng, Y.-P. Zhang, D. Tan, Z. Yuan, and M.-Q. Dong (2013)
eLife Sci 2, e00518
   Abstract »    Full Text »    PDF »
Quantitation of the Dynamic Profiles of the Innate Immune Response Using Multiplex Selected Reaction Monitoring-Mass Spectrometry.
Y. Zhao, B. Tian, C. B. Edeh, and A. R. Brasier (2013)
Mol. Cell. Proteomics 12, 1513-1529
   Abstract »    Full Text »    PDF »
Enhanced Energy Metabolism Contributes to the Extended Life Span of Calorie-restricted Caenorhabditis elegans.
Y. Yuan, C. S. Kadiyala, T.-T. Ching, P. Hakimi, S. Saha, H. Xu, C. Yuan, V. Mullangi, L. Wang, E. Fivenson, et al. (2012)
J. Biol. Chem. 287, 31414-31426
   Abstract »    Full Text »    PDF »
LAAT-1 Is the Lysosomal Lysine/Arginine Transporter That Maintains Amino Acid Homeostasis.
B. Liu, H. Du, R. Rutkowski, A. Gartner, and X. Wang (2012)
Science 337, 351-354
   Abstract »    Full Text »    PDF »
Aging as an Event of Proteostasis Collapse.
R. C. Taylor and A. Dillin (2011)
Cold Spring Harb Perspect Biol 3, a004440
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Integrin Adhesion Complexes.
A. Byron, J. D. Humphries, M. D. Bass, D. Knight, and M. J. Humphries (2011)
Science Signaling 4, pt2
   Abstract »    Full Text »    PDF »
Two sides of lifespan regulating genes: pro-longevity or anti-longevity?.
S. Honjoh and E. Nishida (2011)
J. Biochem. 149, 381-388
   Abstract »    Full Text »    PDF »
Computational biology for ageing.
D. Wieser, I. Papatheodorou, M. Ziehm, and J. M. Thornton (2011)
Phil Trans R Soc B 366, 51-63
   Abstract »    Full Text »    PDF »
Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism.
J. A. Butler, N. Ventura, T. E. Johnson, and S. L. Rea (2010)
FASEB J 24, 4977-4988
   Abstract »    Full Text »    PDF »
Regulation of Dauer Formation by O-GlcNAcylation in Caenorhabditis elegans.
J. Lee, K.-Y. Kim, J. Lee, and Y.-K. Paik (2010)
J. Biol. Chem. 285, 2930-2939
   Abstract »    Full Text »    PDF »
Quantitative Proteomics by Metabolic Labeling of Model Organisms.
J. W. Gouw, J. Krijgsveld, and A. J. R. Heck (2010)
Mol. Cell. Proteomics 9, 11-24
   Abstract »    Full Text »    PDF »
Discovery and validation of colonic tumor-associated proteins via metabolic labeling and stable isotopic dilution.
E. L. Huttlin, X. Chen, G. A. Barrett-Wilt, A. D. Hegeman, R. B. Halberg, A. C. Harms, M. A. Newton, W. F. Dove, and M. R. Sussman (2009)
PNAS 106, 17235-17240
   Abstract »    Full Text »    PDF »
Proteomic Analysis of Integrin-Associated Complexes Identifies RCC2 as a Dual Regulator of Rac1 and Arf6.
J. D. Humphries, A. Byron, M. D. Bass, S. E. Craig, J. W. Pinney, D. Knight, and M. J. Humphries (2009)
Science Signaling 2, ra51
   Abstract »    Full Text »    PDF »
The cellular geometry of growth drives the amino acid economy of Caenorhabditis elegans.
J. Swire, S. Fuchs, J. G. Bundy, and A. M. Leroi (2009)
Proc R Soc B 276, 2747-2754
   Abstract »    Full Text »    PDF »
Excretory/Secretory Proteome of the Adult Developmental Stage of Human Blood Fluke, Schistosoma japonicum.
F. Liu, S.-J. Cui, W. Hu, Z. Feng, Z.-Q. Wang, and Z.-G. Han (2009)
Mol. Cell. Proteomics 8, 1236-1251
   Abstract »    Full Text »    PDF »
Integrating siRNA and protein-protein interaction data to identify an expanded insulin signaling network.
Z. Tu, C. Argmann, K. K. Wong, L. J. Mitnaul, S. Edwards, I. C. Sach, J. Zhu, and E. E. Schadt (2009)
Genome Res. 19, 1057-1067
   Abstract »    Full Text »    PDF »
Quantitative Proteomic Analysis of Bean Plants Infected by a Virulent and Avirulent Obligate Rust Fungus.
J. Lee, J. Feng, K. B. Campbell, B. E. Scheffler, W. M. Garrett, S. Thibivilliers, G. Stacey, D. Q. Naiman, M. L. Tucker, M. A. Pastor-Corrales, et al. (2009)
Mol. Cell. Proteomics 8, 19-31
   Abstract »    Full Text »    PDF »
Against the oxidative damage theory of aging: superoxide dismutases protect against oxidative stress but have little or no effect on life span in Caenorhabditis elegans.
R. Doonan, J. J. McElwee, F. Matthijssens, G. A. Walker, K. Houthoofd, P. Back, A. Matscheski, J. R. Vanfleteren, and D. Gems (2008)
Genes & Dev. 22, 3236-3241
   Abstract »    Full Text »    PDF »
Quantitative mass spectrometry as a tool for nutritional proteomics.
J. J Moresco, M.-Q. Dong, and J. R Yates III (2008)
Am J Clin Nutr 88, 597-604
   Abstract »    Full Text »    PDF »
Proteomics in Caenorhabditis elegans.
A. Audhya and A. Desai (2008)
Briefings in Functional Genomics 7, 205-210
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans K10C2.4 Gene Encodes a Member of the Fumarylacetoacetate Hydrolase Family: A CAENORHABDITIS ELEGANS MODEL OF TYPE I TYROSINEMIA.
A. L. Fisher, K. E. Page, G. J. Lithgow, and L. Nash (2008)
J. Biol. Chem. 283, 9127-9135
   Abstract »    Full Text »    PDF »
Distinct Activities of the Germline and Somatic Reproductive Tissues in the Regulation of Caenorhabditis elegans' Longevity.
T. M. Yamawaki, N. Arantes-Oliveira, J. R. Berman, P. Zhang, and C. Kenyon (2008)
Genetics 178, 513-526
   Abstract »    Full Text »    PDF »
CELL BIOLOGY: Proteins That Promote Long Life.
S. K. Kim (2007)
Science 317, 603-604
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882