Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 317 (5839): 799-803

Copyright © 2007 by the American Association for the Advancement of Science

Mechanism of Na+/H+ Antiporting

Isaiah T. Arkin,1* Huafeng Xu,1 Morten Ø. Jensen,1 Eyal Arbely,2 Estelle R. Bennett,2 Kevin J. Bowers,1 Edmond Chow,1 Ron O. Dror,1 Michael P. Eastwood,1 Ravenna Flitman-Tene,2 Brent A. Gregersen,1 John L. Klepeis,1 István Kolossváry,1 Yibing Shan,1 David E. Shaw1,3{dagger}

Abstract: Na+/H+ antiporters are central to cellular salt and pH homeostasis. The structure of Escherichia coli NhaA was recently determined, but its mechanisms of transport and pH regulation remain elusive. We performed molecular dynamics simulations of NhaA that, with existing experimental data, enabled us to propose an atomically detailed model of antiporter function. Three conserved aspartates are key to our proposed mechanism: Asp164 (D164) is the Na+-binding site, D163 controls the alternating accessibility of this binding site to the cytoplasm or periplasm, and D133 is crucial for pH regulation. Consistent with experimental stoichiometry, two protons are required to transport a single Na+ ion: D163 protonates to reveal the Na+-binding site to the periplasm, and subsequent protonation of D164 releases Na+. Additional mutagenesis experiments further validated the model.

1 D. E. Shaw Research, New York, NY 10036, USA.
2 The Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem 91904, Israel.
3 Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.

* On sabbatical leave from The Hebrew University of Jerusalem, Department of Biological Chemistry, Jerusalem, 91904, Israel.

{dagger} To whom correspondence should be addressed. E-mail: david{at}

Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.
M. Lu, J. Symersky, M. Radchenko, A. Koide, Y. Guo, R. Nie, and S. Koide (2013)
PNAS 110, 2099-2104
   Abstract »    Full Text »    PDF »
Roles of Subunit NuoK (ND4L) in the Energy-transducing Mechanism of Escherichia coli NDH-1 (NADH:Quinone Oxidoreductase).
J. Torres-Bacete, P. K. Sinha, M. Sato, G. Patki, M.-C. Kao, A. Matsuno-Yagi, and T. Yagi (2012)
J. Biol. Chem. 287, 42763-42772
   Abstract »    Full Text »    PDF »
A Model-Structure of a Periplasm-facing State of the NhaA Antiporter Suggests the Molecular Underpinnings of pH-induced Conformational Changes.
M. Schushan, A. Rimon, T. Haliloglu, L. R. Forrest, E. Padan, and N. Ben-Tal (2012)
J. Biol. Chem. 287, 18249-18261
   Abstract »    Full Text »    PDF »
Cellular Response of Campylobacter jejuni to Trisodium Phosphate.
C. T. Riedel, M. T. Cohn, R. A. Stabler, B. Wren, and L. Brondsted (2012)
Appl. Envir. Microbiol. 78, 1411-1415
   Abstract »    Full Text »    PDF »
Site-directed tryptophan fluorescence reveals two essential conformational changes in the Na+/H+ antiporter NhaA.
L. Kozachkov and E. Padan (2011)
PNAS 108, 15769-15774
   Abstract »    Full Text »    PDF »
Transport Mechanism and pH Regulation of the Na+/H+ Antiporter NhaA from Escherichia coli: AN ELECTROPHYSIOLOGICAL STUDY.
T. Mager, A. Rimon, E. Padan, and K. Fendler (2011)
J. Biol. Chem. 286, 23570-23581
   Abstract »    Full Text »    PDF »
Two Conflicting NHE1 Model Structures: Compatibility with Experimental Data and Implications for the Transport Mechanism.
M. Schushan, M. Landau, E. Padan, and N. Ben-Tal (2011)
J. Biol. Chem. 286, le9
   Full Text »    PDF »
Lipid Simulations: A Perspective on Lipids in Action.
I. Vattulainen and T. Rog (2011)
Cold Spring Harb Perspect Biol 3, a004655
   Abstract »    Full Text »    PDF »
Charge Transport in the ClC-type Chloride-Proton Anti-porter from Escherichia coli.
G. Kieseritzky and E.-W. Knapp (2011)
J. Biol. Chem. 286, 2976-2986
   Abstract »    Full Text »    PDF »
Structural Modeling and Electron Paramagnetic Resonance Spectroscopy of the Human Na+/H+ Exchanger Isoform 1, NHE1.
E. B. Nygaard, J. O. Lagerstedt, G. Bjerre, B. Shi, M. Budamagunta, K. A. Poulsen, S. Meinild, R. R. Rigor, J. C. Voss, P. M. Cala, et al. (2011)
J. Biol. Chem. 286, 634-648
   Abstract »    Full Text »    PDF »
Structural and Functional Analysis of Transmembrane Segment VI of the NHE1 Isoform of the Na+/H+ Exchanger.
J. Tzeng, B. L. Lee, B. D. Sykes, and L. Fliegel (2010)
J. Biol. Chem. 285, 36656-36665
   Abstract »    Full Text »    PDF »
Vacuolar Cation/H+ Antiporters of Saccharomyces cerevisiae.
O. Cagnac, M. N. Aranda-Sicilia, M. Leterrier, M.-P. Rodriguez-Rosales, and K. Venema (2010)
J. Biol. Chem. 285, 33914-33922
   Abstract »    Full Text »    PDF »
Paradigm for industrial strain improvement identifies sodium acetate tolerance loci in Zymomonas mobilis and Saccharomyces cerevisiae.
S. Yang, M. L. Land, D. M. Klingeman, D. A. Pelletier, T.-Y. S. Lu, S. L. Martin, H.-B. Guo, J. C. Smith, and S. D. Brown (2010)
PNAS 107, 10395-10400
   Abstract »    Full Text »    PDF »
Perspectives on: Molecular dynamics and computational methods: Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations.
R. O. Dror, M. O. Jensen, D. W. Borhani, and D. E. Shaw (2010)
J. Gen. Physiol. 135, 555-562
   Full Text »    PDF »
Features of Subunit NuoM (ND4) in Escherichia coli NDH-1: TOPOLOGY AND IMPLICATION OF CONSERVED GLU144 FOR COUPLING SITE 1.
J. Torres-Bacete, P. K. Sinha, N. Castro-Guerrero, A. Matsuno-Yagi, and T. Yagi (2009)
J. Biol. Chem. 284, 33062-33069
   Abstract »    Full Text »    PDF »
Substrate Binding Tunes Conformational Flexibility and Kinetic Stability of an Amino Acid Antiporter.
C. A. Bippes, A. Zeltina, F. Casagrande, M. Ratera, M. Palacin, D. J. Muller, and D. Fotiadis (2009)
J. Biol. Chem. 284, 18651-18663
   Abstract »    Full Text »    PDF »
NhaA crystal structure: functional-structural insights.
E. Padan, L. Kozachkov, K. Herz, and A. Rimon (2009)
J. Exp. Biol. 212, 1593-1603
   Abstract »    Full Text »    PDF »
Structural and Functional Analysis of Transmembrane XI of the NHE1 Isoform of the Na+/H+ Exchanger.
B. L. Lee, X. Li, Y. Liu, B. D. Sykes, and L. Fliegel (2009)
J. Biol. Chem. 284, 11546-11556
   Abstract »    Full Text »    PDF »
Two Snapshots of Electron Transport across the Membrane: INSIGHTS INTO THE STRUCTURE AND FUNCTION OF DsbD.
S.-H. Cho and J. Beckwith (2009)
J. Biol. Chem. 284, 11416-11424
   Abstract »    Full Text »    PDF »
G-Protein-Coupled Receptor Kinase Interacting Protein-1 Is Required for Pulmonary Vascular Development.
J. Pang, R. Hoefen, G. S. Pryhuber, J. Wang, G. Yin, R. J. White, X. Xu, M. R. O'Dell, A. Mohan, H. Michaloski, et al. (2009)
Circulation 119, 1524-1532
   Abstract »    Full Text »    PDF »
A provisional transport mechanism for a chloride channel-type Cl-/H+ exchanger.
C. Miller and W. Nguitragool (2009)
Phil Trans R Soc B 364, 175-180
   Abstract »    Full Text »    PDF »
Steady-state Function of the Ubiquitous Mammalian Na/H Exchanger (NHE1) in Relation to Dimer Coupling Models with 2Na/2H Stoichiometry.
D. Fuster, O. W. Moe, and D. W. Hilgemann (2008)
J. Gen. Physiol. 132, 465-480
   Abstract »    Full Text »    PDF »
Ion binding and selectivity of the rotor ring of the Na+-transporting V-ATPase.
T. Murata, I. Yamato, Y. Kakinuma, M. Shirouzu, J. E. Walker, S. Yokoyama, and S. Iwata (2008)
PNAS 105, 8607-8612
   Abstract »    Full Text »    PDF »
Complete Genome Sequence of Nitrobacter hamburgensis X14 and Comparative Genomic Analysis of Species within the Genus Nitrobacter.
S. R. Starkenburg, F. W. Larimer, L. Y. Stein, M. G. Klotz, P. S. G. Chain, L. A. Sayavedra-Soto, A. T. Poret-Peterson, M. E. Gentry, D. J. Arp, B. Ward, et al. (2008)
Appl. Envir. Microbiol. 74, 2852-2863
   Abstract »    Full Text »    PDF »
Cationic pathway of pH regulation in larvae of Anopheles gambiae.
B. A. Okech, D. Y. Boudko, P. J. Linser, and W. R. Harvey (2008)
J. Exp. Biol. 211, 957-968
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882