Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 317 (5839): 803-806

Copyright © 2007 by the American Association for the Advancement of Science

Augmented Wnt Signaling in a Mammalian Model of Accelerated Aging

Hongjun Liu,1 Maria M Fergusson,1* Rogerio M. Castilho,2* Jie Liu,1 Liu Cao,1 Jichun Chen,3 Daniela Malide,4 Ilsa I. Rovira,1 Daniel Schimel,5 Calvin J. Kuo,6 J. Silvio Gutkind,2 Paul M. Hwang,1 Toren Finkel1{dagger}

Abstract: The contribution of stem and progenitor cell dysfunction and depletion in normal aging remains incompletely understood. We explored this concept in the Klotho mouse model of accelerated aging. Analysis of various tissues and organs from young Klotho mice revealed a decrease in stem cell number and an increase in progenitor cell senescence. Because klotho is a secreted protein, we postulated that klotho might interact with other soluble mediators of stem cells. We found that klotho bound to various Wnt family members. In a cell culture model, the Wnt-klotho interaction resulted in the suppression of Wnt biological activity. Tissues and organs from klotho-deficient animals showed evidence of increased Wnt signaling, and ectopic expression of klotho antagonized the activity of endogenous and exogenous Wnt. Both in vitro and in vivo, continuous Wnt exposure triggered accelerated cellular senescence. Thus, klotho appears to be a secreted Wnt antagonist and Wnt proteins have an unexpected role in mammalian aging.

1 Cardiology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
2 Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA.
3 Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
4 Light Microscopy Core Facility, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
5 Mouse Imaging Facility, NIH, Bethesda, MD 20892, USA.
6 Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: finkelt{at}

Aging increases CCN1 expression leading to muscle senescence.
J. Du, J. D. Klein, F. Hassounah, J. Zhang, C. Zhang, and X. H. Wang (2014)
Am J Physiol Cell Physiol 306, C28-C36
   Abstract »    Full Text »    PDF »
Biochemical and Functional Characterization of the Klotho-VS Polymorphism Implicated in Aging and Disease Risk.
T. B. Tucker Zhou, G. D. King, C. Chen, and C. R. Abraham (2013)
J. Biol. Chem. 288, 36302-36311
   Abstract »    Full Text »    PDF »
Growth hormone and Klotho.
C. Schmid, M. C. Neidert, O. Tschopp, L. Sze, and R. L. Bernays (2013)
J. Endocrinol. 219, R37-R57
   Abstract »    Full Text »    PDF »
Klotho Regulates Retinal Pigment Epithelial Functions and Protects Against Oxidative Stress.
M. Kokkinaki, M. Abu-Asab, N. Gunawardena, G. Ahern, M. Javidnia, J. Young, and N. Golestaneh (2013)
J. Neurosci. 33, 16346-16359
   Abstract »    Full Text »    PDF »
The Age-Regulating Protein Klotho Is Vital to Sustain Retinal Function.
N. J. Reish, A. Maltare, A. S. McKeown, A. M. Laszczyk, T. W. Kraft, A. K. Gross, and G. D. King (2013)
Invest. Ophthalmol. Vis. Sci. 54, 6675-6685
   Abstract »    Full Text »    PDF »
Molecular basis of organ fibrosis: Potential therapeutic approaches.
A. K. Ghosh, S. E. Quaggin, and D. E. Vaughan (2013)
Experimental Biology and Medicine 238, 461-481
   Abstract »    Full Text »    PDF »
Klotho to Treat Kidney Fibrosis.
M. D. Sanchez-Nino, A. B. Sanz, and A. Ortiz (2013)
J. Am. Soc. Nephrol. 24, 687-689
   Full Text »    PDF »
Loss of Klotho Contributes to Kidney Injury by Derepression of Wnt/{beta}-Catenin Signaling.
L. Zhou, Y. Li, D. Zhou, R. J. Tan, and Y. Liu (2013)
J. Am. Soc. Nephrol. 24, 771-785
   Abstract »    Full Text »    PDF »
Proliferation Rate of Somatic Cells Affects Reprogramming Efficiency.
Y. Xu, X. Wei, M. Wang, R. Zhang, Y. Fu, M. Xing, Q. Hua, and X. Xie (2013)
J. Biol. Chem. 288, 9767-9778
   Abstract »    Full Text »    PDF »
Telomere stability--Wnt it or lose it.
K. Bauer, S. Tao, and K. L. Rudolph (2013)
EMBO Rep. 14, 297-298
   Full Text »    PDF »
Oncogenic Wnt/{beta}-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research.
K. Wang, N. Li, C. H. Yeung, J. Y. Li, H. Y. Wang, and T. G. Cooper (2013)
Mol. Hum. Reprod. 19, 57-71
   Abstract »    Full Text »    PDF »
The Antiaging Protein Klotho Enhances Oligodendrocyte Maturation and Myelination of the CNS.
C.-D. Chen, J. A. Sloane, H. Li, N. Aytan, E. L. Giannaris, E. Zeldich, J. D. Hinman, A. Dedeoglu, D. L. Rosene, R. Bansal, et al. (2013)
J. Neurosci. 33, 1927-1939
   Abstract »    Full Text »    PDF »
FGF23 Suppresses Chondrocyte Proliferation in the Presence of Soluble {alpha}-Klotho both in Vitro and in Vivo.
M. Kawai, S. Kinoshita, A. Kimoto, Y. Hasegawa, K. Miyagawa, M. Yamazaki, Y. Ohata, K. Ozono, and T. Michigami (2013)
J. Biol. Chem. 288, 2414-2427
   Abstract »    Full Text »    PDF »
Satellite Cells and the Muscle Stem Cell Niche.
H. Yin, F. Price, and M. A. Rudnicki (2013)
Physiol Rev 93, 23-67
   Abstract »    Full Text »    PDF »
Klotho protects against mouse renal fibrosis by inhibiting Wnt signaling.
M. Satoh, H. Nagasu, Y. Morita, T. P. Yamaguchi, Y. S. Kanwar, and N. Kashihara (2012)
Am J Physiol Renal Physiol 303, F1641-F1651
   Abstract »    Full Text »    PDF »
Celebrating 30 Years of Wnt Signaling.
F. Verkaar, K. M. Cadigan, and R. van Amerongen (2012)
Science Signaling 5, mr2
   Abstract »    Full Text »    PDF »
Inducible progenitor-derived Wingless regulates adult midgut regeneration in Drosophila.
J. B. Cordero, R. K. Stefanatos, A. Scopelliti, M. Vidal, and O. J. Sansom (2012)
EMBO J. 31, 3901-3917
   Abstract »    Full Text »    PDF »
Wnt Proteins.
K. Willert and R. Nusse (2012)
Cold Spring Harb Perspect Biol 4, a007864
   Abstract »    Full Text »    PDF »
The emerging role of Klotho in clinical nephrology.
M. C. Hu, M. Kuro-o, and O. W. Moe (2012)
Nephrol. Dial. Transplant. 27, 2650-2657
   Abstract »    Full Text »    PDF »
Insulin-Like Growth Factors and Insulin: At the Crossroad Between Tumor Development and Longevity.
R. Novosyadlyy and D. LeRoith (2012)
J Gerontol A Biol Sci Med Sci 67A, 640-651
   Abstract »    Full Text »    PDF »
Short Hairpin RNA Screen Indicates That Klotho Beta/FGF19 Protein Overcomes Stasis in Human Colonic Epithelial Cells.
J. Kim, U. Eskiocak, G. Stadler, Z. Lou, M. Kuro-o, J. W. Shay, and W. E. Wright (2011)
J. Biol. Chem. 286, 43294-43300
   Abstract »    Full Text »    PDF »
Wnt5a Skews Dendritic Cell Differentiation to an Unconventional Phenotype with Tolerogenic Features.
J. Valencia, C. Hernandez-Lopez, V. G. Martinez, L. Hidalgo, A. G. Zapata, A. Vicente, A. Varas, and R. Sacedon (2011)
J. Immunol. 187, 4129-4139
   Abstract »    Full Text »    PDF »
The Inflammatory Cytokines TWEAK and TNF{alpha} Reduce Renal Klotho Expression through NF{kappa}B.
J. A. Moreno, M. C. Izquierdo, M. D. Sanchez-Nino, B. Suarez-Alvarez, C. Lopez-Larrea, A. Jakubowski, J. Blanco, R. Ramirez, R. Selgas, M. Ruiz-Ortega, et al. (2011)
J. Am. Soc. Nephrol. 22, 1315-1325
   Abstract »    Full Text »    PDF »
The Dual Role of Sirtuins in Cancer.
L. Bosch-Presegue and A. Vaquero (2011)
Genes & Cancer 2, 648-662
   Abstract »    Full Text »    PDF »
Manifestations and mechanisms of stem cell aging.
L. Liu and T. A. Rando (2011)
J. Cell Biol. 193, 257-266
   Abstract »    Full Text »    PDF »
Klotho Inhibits Transforming Growth Factor-{beta}1 (TGF-{beta}1) Signaling and Suppresses Renal Fibrosis and Cancer Metastasis in Mice.
S. Doi, Y. Zou, O. Togao, J. V. Pastor, G. B. John, L. Wang, K. Shiizaki, R. Gotschall, S. Schiavi, N. Yorioka, et al. (2011)
J. Biol. Chem. 286, 8655-8665
   Abstract »    Full Text »    PDF »
Four faces of cellular senescence.
F. Rodier and J. Campisi (2011)
J. Cell Biol. 192, 547-556
   Abstract »    Full Text »    PDF »
Wnt Signaling Regulates Hepatic Metabolism.
H. Liu, M. M. Fergusson, J. J. Wu, I. I. Rovira, J. Liu, O. Gavrilova, T. Lu, J. Bao, D. Han, M. N. Sack, et al. (2011)
Science Signaling 4, ra6
   Abstract »    Full Text »    PDF »
Wnt Signaling and Aging-Related Heart Disorders.
A. T. Naito, I. Shiojima, and I. Komuro (2010)
Circ. Res. 107, 1295-1303
   Abstract »    Full Text »    PDF »
A muscle resident cell population promotes fibrosis in hindlimb skeletal muscles of mdx mice through the Wnt canonical pathway.
F. Trensz, S. Haroun, A. Cloutier, M. V. Richter, and G. Grenier (2010)
Am J Physiol Cell Physiol 299, C939-C947
   Abstract »    Full Text »    PDF »
Cell Senescence in the Aging Kidney.
H. Yang and A. B. Fogo (2010)
J. Am. Soc. Nephrol. 21, 1436-1439
   Abstract »    Full Text »    PDF »
Loss of Kitlow progenitors, reduced stem cell factor and high oxidative stress underlie gastric dysfunction in progeric mice.
F. Izbeki, D. T. Asuzu, A. Lorincz, M. R. Bardsley, L. N. Popko, K. M. Choi, D. L. Young, Y. Hayashi, D. R. Linden, M. Kuro-o, et al. (2010)
J. Physiol. 588, 3101-3117
   Abstract »    Full Text »    PDF »
Wnt signaling regulates mitochondrial physiology and insulin sensitivity.
J. C. Yoon, A. Ng, B. H. Kim, A. Bianco, R. J. Xavier, and S. J. Elledge (2010)
Genes & Dev. 24, 1507-1518
   Abstract »    Full Text »    PDF »
Targeting Wnt Signaling: Can We Safely Eradicate Cancer Stem Cells?.
F. Takahashi-Yanaga and M. Kahn (2010)
Clin. Cancer Res. 16, 3153-3162
   Abstract »    Full Text »    PDF »
The Apcmin mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS.
S. W. Lane, S. M. Sykes, F. Al-Shahrour, S. Shterental, M. Paktinat, C. Lo Celso, J. L. Jesneck, B. L. Ebert, D. A. Williams, and D. G. Gilliland (2010)
Blood 115, 3489-3497
   Abstract »    Full Text »    PDF »
H. Sugiura, T. Yoshida, K. Nitta, and K. Tsuchiya (2010)
Nephrol. Dial. Transplant. 25, 1008-1009
   Full Text »    PDF »
WNT16B Is a New Marker of Cellular Senescence That Regulates p53 Activity and the Phosphoinositide 3-Kinase/AKT Pathway.
R. Binet, D. Ythier, A. I. Robles, M. Collado, D. Larrieu, C. Fonti, E. Brambilla, C. Brambilla, M. Serrano, C. C. Harris, et al. (2009)
Cancer Res. 69, 9183-9191
   Abstract »    Full Text »    PDF »
Senescence, apoptosis, and stem cell biology: the rationale for an expanded view of intracrine action.
R. N. Re and J. L. Cook (2009)
Am J Physiol Heart Circ Physiol 297, H893-H901
   Abstract »    Full Text »    PDF »
Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks.
X. Song, V. Di Giovanni, N. He, K. Wang, A. Ingram, N. D. Rosenblum, and Y. Pei (2009)
Hum. Mol. Genet. 18, 2328-2343
   Abstract »    Full Text »    PDF »
Axin expression in thymic stromal cells contributes to an age-related increase in thymic adiposity and is associated with reduced thymopoiesis independently of ghrelin signaling.
H. Yang, Y.-H. Youm, Y. Sun, J.-S. Rim, C. J. Galban, B. Vandanmagsar, and V. D. Dixit (2009)
J. Leukoc. Biol. 85, 928-938
   Abstract »    Full Text »    PDF »
Stem Cells Use Distinct Self-renewal Programs at Different Ages.
B.P. Levi and S.J. Morrison (2009)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Klotho ablation converts the biochemical and skeletal alterations in FGF23 (R176Q) transgenic mice to a Klotho-deficient phenotype.
X. Bai, Q. Dinghong, D. Miao, D. Goltzman, and A. C. Karaplis (2009)
Am J Physiol Endocrinol Metab 296, E79-E88
   Abstract »    Full Text »    PDF »
The Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair.
M. P. Alfaro, M. Pagni, A. Vincent, J. Atkinson, M. F. Hill, J. Cates, J. M. Davidson, J. Rottman, E. Lee, and P. P. Young (2008)
PNAS 105, 18366-18371
   Abstract »    Full Text »    PDF »
A genome-wide RNAi screen for Wnt/{beta}-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer.
W. Tang, M. Dodge, D. Gundapaneni, C. Michnoff, M. Roth, and L. Lum (2008)
PNAS 105, 9697-9702
   Abstract »    Full Text »    PDF »
Nuclear factor-{kappa}B-dependent reversal of aging-induced alterations in T cell cytokines.
M.-C. Huang, J.-J. Liao, S. Bonasera, D. L. Longo, and E. J. Goetzl (2008)
FASEB J 22, 2142-2150
   Abstract »    Full Text »    PDF »
Aging and Disease as Modifiers of Efficacy of Cell Therapy.
S. Dimmeler and A. Leri (2008)
Circ. Res. 102, 1319-1330
   Abstract »    Full Text »    PDF »
The impact of aging on kidney repair.
R. Schmitt and L. G. Cantley (2008)
Am J Physiol Renal Physiol 294, F1265-F1272
   Abstract »    Full Text »    PDF »
Gone with the Wnt/Notch: stem cells in laminopathies, progeria, and aging.
E. Meshorer and Y. Gruenbaum (2008)
J. Cell Biol. 181, 9-13
   Abstract »    Full Text »    PDF »
Nuclear envelope defects cause stem cell dysfunction in premature-aging mice.
J. Espada, I. Varela, I. Flores, A. P. Ugalde, J. Cadinanos, A. M. Pendas, C. L. Stewart, K. Tryggvason, M. A. Blasco, J. M.P. Freije, et al. (2008)
J. Cell Biol. 181, 27-35
   Abstract »    Full Text »    PDF »
Wnt makes stem cells act their age.
M. Leslie (2007)
J. Cell Biol. 178, 892
   Full Text »    PDF »
Increased Wnt Signaling During Aging Alters Muscle Stem Cell Fate and Increases Fibrosis.
A. S. Brack, M. J. Conboy, S. Roy, M. Lee, C. J. Kuo, C. Keller, and T. A. Rando (2007)
Science 317, 807-810
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882