Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 317 (5841): 1072-1076

Copyright © 2007 by the American Association for the Advancement of Science

Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster

Jochen J. Sieber,1 Katrin I. Willig,2 Carsten Kutzner,3 Claas Gerding-Reimers,1 Benjamin Harke,2 Gerald Donnert,2 Burkhard Rammner,4 Christian Eggeling,2 Stefan W. Hell,2 Helmut Grubmüller,3 Thorsten Lang1{dagger}

Abstract: Most plasmalemmal proteins organize in submicrometer-sized clusters whose architecture and dynamics are still enigmatic. With syntaxin 1 as an example, we applied a combination of far-field optical nanoscopy, biochemistry, fluorescence recovery after photobleaching (FRAP) analysis, and simulations to show that clustering can be explained by self-organization based on simple physical principles. On average, the syntaxin clusters exhibit a diameter of 50 to 60 nanometers and contain 75 densely crowded syntaxins that dynamically exchange with freely diffusing molecules. Self-association depends on weak homophilic protein-protein interactions. Simulations suggest that clustering immobilizes and conformationally constrains the molecules. Moreover, a balance between self-association and crowding-induced steric repulsions is sufficient to explain both the size and dynamics of syntaxin clusters and likely of many oligomerizing membrane proteins that form supramolecular structures.

1 Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
2 Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
3 Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
4 Friedensallee 92, 22763 Hamburg, Germany.

{dagger} To whom correspondence should be addressed. E-mail: tlang{at}gwdg.de


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Synaptic vesicle recycling: steps and principles.
S. O. Rizzoli (2014)
EMBO J. 33, 788-822
   Abstract »    Full Text »    PDF »
Introduction to super-resolution microscopy.
M. Yamanaka, N. I. Smith, and K. Fujita (2014)
Microscopy (Tokyo)
   Abstract »    Full Text »    PDF »
Deciphering Dead-End Docking of Large Dense Core Vesicles in Bovine Chromaffin Cells.
S. Hugo, E. Dembla, M. Halimani, U. Matti, J. Rettig, and U. Becherer (2013)
J. Neurosci. 33, 17123-17137
   Abstract »    Full Text »    PDF »
Ultrahigh-resolution imaging reveals formation of neuronal SNARE/Munc18 complexes in situ.
A. Pertsinidis, K. Mukherjee, M. Sharma, Z. P. Pang, S. R. Park, Y. Zhang, A. T. Brunger, T. C. Sudhof, and S. Chu (2013)
PNAS 110, E2812-E2820
   Abstract »    Full Text »    PDF »
Clustering and Mobility of HIV-1 Env at Viral Assembly Sites Predict Its Propensity To Induce Cell-Cell Fusion.
N. H. Roy, J. Chan, M. Lambele, and M. Thali (2013)
J. Virol. 87, 7516-7525
   Abstract »    Full Text »    PDF »
AtSYP51/52 Functions Diverge in the Post-Golgi Traffic and Differently Affect Vacuolar Sorting.
M. De Benedictis, G. Bleve, M. Faraco, E. Stigliano, F. Grieco, G. Piro, G. Dalessandro, and G. P. Di Sansebastiano (2013)
Mol Plant 6, 916-930
   Abstract »    Full Text »    PDF »
Munc18-1 Protein Molecules Move between Membrane Molecular Depots Distinct from Vesicle Docking Sites.
A. M. Smyth, L. Yang, K. J. Martin, C. Hamilton, W. Lu, M. A. Cousin, C. Rickman, and R. R. Duncan (2013)
J. Biol. Chem. 288, 5102-5113
   Abstract »    Full Text »    PDF »
Cholesterol and Sphingomyelin Drive Ligand-independent T-cell Antigen Receptor Nanoclustering.
E. Molnar, M. Swamy, M. Holzer, K. Beck-Garcia, R. Worch, C. Thiele, G. Guigas, K. Boye, I. F. Luescher, P. Schwille, et al. (2012)
J. Biol. Chem. 287, 42664-42674
   Abstract »    Full Text »    PDF »
Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis.
H. Kasai, N. Takahashi, and H. Tokumaru (2012)
Physiol Rev 92, 1915-1964
   Abstract »    Full Text »    PDF »
Syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet secretion.
S. Ye, Z. A. Karim, R. Al Hawas, J. E. Pessin, A. H. Filipovich, and S. W. Whiteheart (2012)
Blood 120, 2484-2492
   Abstract »    Full Text »    PDF »
Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane.
J. Wang and D. A. Richards (2012)
Biology Open 1, 857-862
   Abstract »    Full Text »    PDF »
Super-resolution Imaging Reveals the Internal Architecture of Nano-sized Syntaxin Clusters.
D. Bar-On, S. Wolter, S. van de Linde, M. Heilemann, G. Nudelman, E. Nachliel, M. Gutman, M. Sauer, and U. Ashery (2012)
J. Biol. Chem. 287, 27158-27167
   Abstract »    Full Text »    PDF »
Cell wall constrains lateral diffusion of plant plasma-membrane proteins.
A. Martiniere, I. Lavagi, G. Nageswaran, D. J. Rolfe, L. Maneta-Peyret, D.-T. Luu, S. W. Botchway, S. E. D. Webb, S. Mongrand, C. Maurel, et al. (2012)
PNAS 109, 12805-12810
   Abstract »    Full Text »    PDF »
Jamming dynamics of stretch-induced surfactant release by alveolar type II cells.
A. Majumdar, S. P. Arold, E. Bartolak-Suki, H. Parameswaran, and B. Suki (2012)
J Appl Physiol 112, 824-831
   Abstract »    Full Text »    PDF »
Syntaxin1A Lateral Diffusion Reveals Transient and Local SNARE Interactions.
C. Ribrault, J. Reingruber, M. Petkovic, T. Galli, N. E. Ziv, D. Holcman, and A. Triller (2011)
J. Neurosci. 31, 17590-17602
   Abstract »    Full Text »    PDF »
A Signaling Mechanism Coupling Netrin-1/Deleted in Colorectal Cancer Chemoattraction to SNARE-Mediated Exocytosis in Axonal Growth Cones.
T. Cotrufo, F. Perez-Branguli, A. Muhaisen, O. Ros, R. Andres, T. Baeriswyl, G. Fuschini, T. Tarrago, M. Pascual, J. Urena, et al. (2011)
J. Neurosci. 31, 14463-14480
   Abstract »    Full Text »    PDF »
Organization of SNAREs within the Golgi Stack.
J. Malsam and T. H. Sollner (2011)
Cold Spring Harb Perspect Biol 3, a005249
   Abstract »    Full Text »    PDF »
Resolving the Function of Distinct Munc18-1/SNARE Protein Interaction Modes in a Reconstituted Membrane Fusion Assay.
Y. Schollmeier, J. M. Krause, S. Kreye, J. Malsam, and T. H. Sollner (2011)
J. Biol. Chem. 286, 30582-30590
   Abstract »    Full Text »    PDF »
CD81 is essential for the formation of membrane protrusions and regulates Rac1-activation in adhesion-dependent immune cell migration.
T. Quast, F. Eppler, V. Semmling, C. Schild, Y. Homsi, S. Levy, T. Lang, C. Kurts, and W. Kolanus (2011)
Blood 118, 1818-1827
   Abstract »    Full Text »    PDF »
Ca2+ induces clustering of membrane proteins in the plasma membrane via electrostatic interactions.
F. E. Zilly, N. D. Halemani, D. Walrafen, L. Spitta, A. Schreiber, R. Jahn, and T. Lang (2011)
EMBO J. 30, 1209-1220
   Abstract »    Full Text »    PDF »
The Syntaxin 4 N Terminus Regulates Its Basolateral Targeting by Munc18c-dependent and -independent Mechanisms.
J. Torres, H. M. Funk, M. M. P. Zegers, and M. B. A. ter Beest (2011)
J. Biol. Chem. 286, 10834-10846
   Abstract »    Full Text »    PDF »
Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes.
L. V. Schafer, D. H. de Jong, A. Holt, A. J. Rzepiela, A. H. de Vries, B. Poolman, J. A. Killian, and S. J. Marrink (2011)
PNAS 108, 1343-1348
   Abstract »    Full Text »    PDF »
Single secretory granules of live cells recruit syntaxin-1 and synaptosomal associated protein 25 (SNAP-25) in large copy numbers.
M. K. Knowles, S. Barg, L. Wan, M. Midorikawa, X. Chen, and W. Almers (2010)
PNAS 107, 20810-20815
   Abstract »    Full Text »    PDF »
Syntaxin clusters assemble reversibly at sites of secretory granules in live cells.
S. Barg, M. K. Knowles, X. Chen, M. Midorikawa, and W. Almers (2010)
PNAS 107, 20804-20809
   Abstract »    Full Text »    PDF »
Transmembrane-domain determinants for SNARE-mediated membrane fusion.
E. Fdez, M. Martinez-Salvador, M. Beard, P. Woodman, and S. Hilfiker (2010)
J. Cell Sci. 123, 2473-2480
   Abstract »    Full Text »    PDF »
t-SNARE Protein Conformations Patterned by the Lipid Microenvironment.
C. Rickman, C. N. Medine, A. R. Dun, D. J. Moulton, O. Mandula, N. D. Halemani, S. O. Rizzoli, L. H. Chamberlain, and R. R. Duncan (2010)
J. Biol. Chem. 285, 13535-13541
   Abstract »    Full Text »    PDF »
Membrane Protein Clusters at Nanoscale Resolution: More Than Pretty Pictures.
T. Lang and S. O. Rizzoli (2010)
Physiology 25, 116-124
   Abstract »    Full Text »    PDF »
Signalling complexes and clusters: functional advantages and methodological hurdles.
M. Cebecauer, M. Spitaler, A. Serge, and A. I. Magee (2010)
J. Cell Sci. 123, 309-320
   Abstract »    Full Text »    PDF »
Single Vesicle Millisecond Fusion Kinetics Reveals Number of SNARE Complexes Optimal for Fast SNARE-mediated Membrane Fusion.
M. K. Domanska, V. Kiessling, A. Stein, D. Fasshauer, and L. K. Tamm (2009)
J. Biol. Chem. 284, 32158-32166
   Abstract »    Full Text »    PDF »
CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions.
D. J. James, J. Kowalchyk, N. Daily, M. Petrie, and T. F. J. Martin (2009)
PNAS 106, 17308-17313
   Abstract »    Full Text »    PDF »
Evaluation of the Heterogeneous Reactivity of the Syntaxin Molecules on the Inner Leaflet of the Plasma Membrane.
D. Bar-On, M. Gutman, A. Mezer, U. Ashery, T. Lang, and E. Nachliel (2009)
J. Neurosci. 29, 12292-12301
   Abstract »    Full Text »    PDF »
A new revolution?: The place of systems biology and synthetic biology in the history of biology.
M. Morange (2009)
EMBO Rep. 10, S50-S53
   Full Text »    PDF »
A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol.
J. Tong, P. P. Borbat, J. H. Freed, and Y.-K. Shin (2009)
PNAS 106, 5141-5146
   Abstract »    Full Text »    PDF »
The nuclear membrane organization of leukotriene synthesis.
A. K. Mandal, P. B. Jones, A. M. Bair, P. Christmas, D. Miller, T.-t. D. Yamin, D. Wisniewski, J. Menke, J. F. Evans, B. T. Hyman, et al. (2008)
PNAS 105, 20434-20439
   Abstract »    Full Text »    PDF »
Structural plasticity with preserved topology in the postsynaptic protein network.
T. A. Blanpied, J. M. Kerr, and M. D. Ehlers (2008)
PNAS 105, 12587-12592
   Abstract »    Full Text »    PDF »
Single-molecule analysis of CD9 dynamics and partitioning reveals multiple modes of interaction in the tetraspanin web.
C. Espenel, E. Margeat, P. Dosset, C. Arduise, C. Le Grimellec, C. A. Royer, C. Boucheix, E. Rubinstein, and P.-E. Milhiet (2008)
J. Cell Biol. 182, 765-776
   Abstract »    Full Text »    PDF »
Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches.
D. J. Muller, N. Wu, and K. Palczewski (2008)
Pharmacol. Rev. 60, 43-78
   Abstract »    Full Text »    PDF »
Molecular simulations of protein dynamics: new windows on mechanisms in biology.
G. G. Dodson, D. P. Lane, and C. S. Verma (2008)
EMBO Rep. 9, 144-150
   Abstract »    Full Text »    PDF »
Munc18-1 prevents the formation of ectopic SNARE complexes in living cells.
C. N. Medine, C. Rickman, L. H. Chamberlain, and R. R. Duncan (2007)
J. Cell Sci. 120, 4407-4415
   Abstract »    Full Text »    PDF »
Independent membrane protein clustering.
N. LeBrasseur (2007)
J. Cell Biol. 178, 1096
   Full Text »    PDF »
BIOCHEMISTRY: Crowds of Syntaxins.
S. H. White (2007)
Science 317, 1045-1046
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882