Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 317 (5842): 1224-1227

Copyright © 2007 by the American Association for the Advancement of Science

Cap-Independent Translation Is Required for Starvation-Induced Differentiation in Yeast

Wendy V. Gilbert, Kaihong Zhou, Tamira K. Butler, Jennifer A. Doudna*

Abstract: Cellular internal ribosome entry sites (IRESs) are untranslated segments of mRNA transcripts thought to initiate protein synthesis in response to environmental stresses that prevent canonical 5' cap–dependent translation. Although numerous cellular mRNAs are proposed to have IRESs, none has a demonstrated physiological function or molecular mechanism. Here we show that seven yeast genes required for invasive growth, a developmental pathway induced by nutrient limitation, contain potent IRESs that require the initiation factor eIF4G for cap-independent translation. In contrast to the RNA structure-based activity of viral IRESs, we show that an unstructured A-rich element mediates internal initiation via recruitment of the poly(A) binding protein (Pab1) to the 5' untranslated region (UTR) of invasive growth messages. A 5'UTR mutation that impairs IRES activity compromises invasive growth, which indicates that cap-independent translation is required for physiological adaptation to stress.

Department of Molecular and Cell Biology, Department of Chemistry, and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA.

* To whom correspondence should be addressed. E-mail: doudna{at}berkeley.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Deciphering the rules by which 5'-UTR sequences affect protein expression in yeast.
S. Dvir, L. Velten, E. Sharon, D. Zeevi, L. B. Carey, A. Weinberger, and E. Segal (2013)
PNAS 110, E2792-E2801
   Abstract »    Full Text »    PDF »
Roles for transcript leaders in translation and mRNA decay revealed by transcript leader sequencing.
J. A. Arribere and W. V. Gilbert (2013)
Genome Res. 23, 977-987
   Abstract »    Full Text »    PDF »
Nucleotide Composition of Cellular Internal Ribosome Entry Sites Defines Dependence on NF45 and Predicts a Posttranscriptional Mitotic Regulon.
M. D. Faye, T. E. Graber, P. Liu, N. Thakor, S. D. Baird, D. Durie, and M. Holcik (2013)
Mol. Cell. Biol. 33, 307-318
   Abstract »    Full Text »    PDF »
Alternative transcription start site selection leads to large differences in translation activity in yeast.
M. F. Rojas-Duran and W. V. Gilbert (2012)
RNA 18, 2299-2305
   Abstract »    Full Text »    PDF »
DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs.
M. Badura, S. Braunstein, J. Zavadil, and R. J. Schneider (2012)
PNAS 109, 18767-18772
   Abstract »    Full Text »    PDF »
Global analysis reveals multiple pathways for unique regulation of mRNA decay in induced pluripotent stem cells.
A. T. Neff, J. Y. Lee, J. Wilusz, B. Tian, and C. J. Wilusz (2012)
Genome Res. 22, 1457-1467
   Abstract »    Full Text »    PDF »
High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling.
G. A. Brar, M. Yassour, N. Friedman, A. Regev, N. T. Ingolia, and J. S. Weissman (2012)
Science 335, 552-557
   Abstract »    Full Text »    PDF »
The Regulation of Filamentous Growth in Yeast.
P. J. Cullen and G. F. Sprague Jr. (2012)
Genetics 190, 23-49
   Abstract »    Full Text »    PDF »
Translational regulation of the cell cycle: when, where, how and why?.
I. Kronja and T. L. Orr-Weaver (2011)
Phil Trans R Soc B 366, 3638-3652
   Abstract »    Full Text »    PDF »
Protein Expression Regulation under Oxidative Stress.
C. Vogel, G. M. Silva, and E. M. Marcotte (2011)
Mol. Cell. Proteomics 10, M111.009217
   Abstract »    Full Text »    PDF »
Translation Initiation: A Regulatory Role for Poly(A) Tracts in Front of the AUG Codon in Saccharomyces cerevisiae.
X. Xia, V. MacKay, X. Yao, J. Wu, F. Miura, T. Ito, and D. R. Morris (2011)
Genetics 189, 469-478
   Abstract »    Full Text »    PDF »
Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated.
L. M. Castelli, J. Lui, S. G. Campbell, W. Rowe, L. A. H. Zeef, L. E. A. Holmes, N. P. Hoyle, J. Bone, J. N. Selley, P. F. G. Sims, et al. (2011)
Mol. Biol. Cell 22, 3379-3393
   Abstract »    Full Text »    PDF »
Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis.
P. Pan and F. van Breukelen (2011)
Am J Physiol Regulatory Integrative Comp Physiol 301, R370-R377
   Abstract »    Full Text »    PDF »
5'TRU: Identification and Analysis of Translationally Regulative 5'Untranslated Regions in Amino Acid Starved Yeast Cells.
N. Rachfall, I. Heinemeyer, B. Morgenstern, O. Valerius, and G. H. Braus (2011)
Mol. Cell. Proteomics 10, M110.003350
   Abstract »    Full Text »    PDF »
Noncanonical Translation Initiation of the Arabidopsis Flowering Time and Alternative Polyadenylation Regulator FCA.
G. G. Simpson, R. E. Laurie, P. P. Dijkwel, V. Quesada, P. A. Stockwell, C. Dean, and R. C. Macknight (2010)
PLANT CELL 22, 3764-3777
   Abstract »    Full Text »    PDF »
Power of Yeast for Analysis of Eukaryotic Translation Initiation.
M. Altmann and P. Linder (2010)
J. Biol. Chem. 285, 31907-31912
   Full Text »    PDF »
Alternative Ways to Think about Cellular Internal Ribosome Entry.
W. V. Gilbert (2010)
J. Biol. Chem. 285, 29033-29038
   Abstract »    Full Text »    PDF »
Stress-Inducible Alternative Translation Initiation of Human Cytomegalovirus Latency Protein pUL138.
L. Grainger, L. Cicchini, M. Rak, A. Petrucelli, K. D. Fitzgerald, B. L. Semler, and F. Goodrum (2010)
J. Virol. 84, 9472-9486
   Abstract »    Full Text »    PDF »
Systematic Epistasis Analysis of the Contributions of Protein Kinase A- and Mitogen-Activated Protein Kinase-Dependent Signaling to Nutrient Limitation-Evoked Responses in the Yeast Saccharomyces cerevisiae.
R. E. Chen and J. Thorner (2010)
Genetics 185, 855-870
   Abstract »    Full Text »    PDF »
A possible mechanism for the regulation of IRES-mediated expression by eIF2A.
W. C. Merrick, L. C. Reineke, Y. Cao, and D. Baus (2010)
FASEB J 24, 467.5
Characterization of the functional role of nucleotides within the URE2 IRES element and the requirements for eIF2A-mediated repression.
L. C. Reineke and W. C. Merrick (2009)
RNA 15, 2264-2277
   Abstract »    Full Text »    PDF »
RPS25 is essential for translation initiation by the Dicistroviridae and hepatitis C viral IRESs.
D. M. Landry, M. I. Hertz, and S. R. Thompson (2009)
Genes & Dev. 23, 2753-2764
   Abstract »    Full Text »    PDF »
Translation initiation factors are not required for Dicistroviridae IRES function in vivo.
N. Deniz, E. M. Lenarcic, D. M. Landry, and S. R. Thompson (2009)
RNA 15, 932-946
   Abstract »    Full Text »    PDF »
The Eukaryotic Ribosome: Current Status and Challenges.
J. D. Dinman (2009)
J. Biol. Chem. 284, 11761-11765
   Abstract »    Full Text »    PDF »
Cap-independent translation of human SP-A 5'-UTR variants: a double-loop structure and cis-element contribution.
G. Wang, X. Guo, P. Silveyra, S. R. Kimball, and J. Floros (2009)
Am J Physiol Lung Cell Mol Physiol 296, L635-L647
   Abstract »    Full Text »    PDF »
Poly(A) leader of eukaryotic mRNA bypasses the dependence of translation on initiation factors.
N. E. Shirokikh and A. S. Spirin (2008)
PNAS 105, 10738-10743
   Abstract »    Full Text »    PDF »
Translation initiation by the c-myc mRNA internal ribosome entry sequence and the poly(A) tail.
C. Thoma, S. Fraterman, M. Gentzel, M. Wilm, and M. W. Hentze (2008)
RNA 14, 1579-1589
   Abstract »    Full Text »    PDF »
A Small Stem Loop Element Directs Internal Initiation of the URE2 Internal Ribosome Entry Site in Saccharomyces cerevisiae.
L. C. Reineke, A. A. Komar, M. G. Caprara, and W. C. Merrick (2008)
J. Biol. Chem. 283, 19011-19025
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882