Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 317 (5843): 1390-1393

Copyright © 2007 by the American Association for the Advancement of Science

LeuT-Desipramine Structure Reveals How Antidepressants Block Neurotransmitter Reuptake

Zheng Zhou,1 Juan Zhen,2 Nathan K. Karpowich,1 Regina M. Goetz,1* Christopher J. Law,1 Maarten E. A. Reith,2{dagger} Da-Neng Wang1{dagger}

Abstract: Tricyclic antidepressants exert their pharmacological effect—inhibiting the reuptake of serotonin, norepinephrine, and dopamine—by directly blocking neurotransmitter transporters (SERT, NET, and DAT, respectively) in the presynaptic membrane. The drug-binding site and the mechanism of this inhibition are poorly understood. We determined the crystal structure at 2.9 angstroms of the bacterial leucine transporter (LeuT), a homolog of SERT, NET, and DAT, in complex with leucine and the antidepressant desipramine. Desipramine binds at the inner end of the extracellular cavity of the transporter and is held in place by a hairpin loop and by a salt bridge. This binding site is separated from the leucine-binding site by the extracellular gate of the transporter. By directly locking the gate, desipramine prevents conformational changes and blocks substrate transport. Mutagenesis experiments on human SERT and DAT indicate that both the desipramine-binding site and its inhibition mechanism are probably conserved in the human neurotransmitter transporters.

1 Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.
2 Departments of Psychiatry and Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.

* Present address: Department of Pharmacology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA.

{dagger} To whom correspondence should be addressed. E-mail: maarten.reith{at}med.nyu.edu; wang{at}saturn.med.nyu.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Molecular Basis for Selective Serotonin Reuptake Inhibition by the Antidepressant Agent Fluoxetine (Prozac).
J. Andersen, N. Stuhr-Hansen, L. G. Zachariassen, H. Koldso, B. Schiott, K. Stromgaard, and A. S. Kristensen (2014)
Mol. Pharmacol. 85, 703-714
   Abstract »    Full Text »    PDF »
Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood.
J. Ng, J. Zhen, E. Meyer, K. Erreger, Y. Li, N. Kakar, J. Ahmad, H. Thiele, C. Kubisch, N. L. Rider, et al. (2014)
Brain 137, 1107-1119
   Abstract »    Full Text »    PDF »
The Two Na+ Sites in the Human Serotonin Transporter Play Distinct Roles in the Ion Coupling and Electrogenicity of Transport.
B. Felts, A. B. Pramod, W. Sandtner, N. Burbach, S. Bulling, H. H. Sitte, and L. K. Henry (2014)
J. Biol. Chem. 289, 1825-1840
   Abstract »    Full Text »    PDF »
Nonclassical Pharmacology of the Dopamine Transporter: Atypical Inhibitors, Allosteric Modulators, and Partial Substrates.
K. C. Schmitt, R. B. Rothman, and M. E. A. Reith (2013)
J. Pharmacol. Exp. Ther. 346, 2-10
   Abstract »    Full Text »    PDF »
Assessment of the 18F-Labeled PET Tracer LMI1195 for Imaging Norepinephrine Handling in Rat Hearts.
T. Higuchi, B. H. Yousefi, F. Kaiser, F. Gartner, C. Rischpler, S. Reder, M. Yu, S. Robinson, M. Schwaiger, and S. G. Nekolla (2013)
J. Nucl. Med. 54, 1142-1146
   Abstract »    Full Text »    PDF »
Chloride binding site of neurotransmitter sodium symporters.
A. K. Kantcheva, M. Quick, L. Shi, A.-M. L. Winther, S. Stolzenberg, H. Weinstein, J. A. Javitch, and P. Nissen (2013)
PNAS 110, 8489-8494
   Abstract »    Full Text »    PDF »
Interaction of Antidepressants with the Serotonin and Norepinephrine Transporters: MUTATIONAL STUDIES OF THE S1 SUBSTRATE BINDING POCKET.
L. Sorensen, J. Andersen, M. Thomsen, S. M. R. Hansen, X. Zhao, A. Sandelin, K. Stromgaard, and A. S. Kristensen (2012)
J. Biol. Chem. 287, 43694-43707
   Abstract »    Full Text »    PDF »
Steric Hindrance Mutagenesis in the Conserved Extracellular Vestibule Impedes Allosteric Binding of Antidepressants to the Serotonin Transporter.
P. Plenge, L. Shi, T. Beuming, J. Te, A. H. Newman, H. Weinstein, U. Gether, and C. J. Loland (2012)
J. Biol. Chem. 287, 39316-39326
   Abstract »    Full Text »    PDF »
Novel C-1 Substituted Cocaine Analogs Unlike Cocaine or Benztropine.
M. E. A. Reith, S. Ali, A. Hashim, I. S. Sheikh, N. Theddu, N. V. Gaddiraju, S. Mehrotra, K. C. Schmitt, T. F. Murray, H. Sershen, et al. (2012)
J. Pharmacol. Exp. Ther. 343, 413-425
   Abstract »    Full Text »    PDF »
A Second Extracellular Site Is Required for Norepinephrine Transport by the Human Norepinephrine Transporter.
C.-I. A. Wang, N. H. Shaikh, S. Ramu, and R. J. Lewis (2012)
Mol. Pharmacol. 82, 898-909
   Abstract »    Full Text »    PDF »
Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines.
R. Spurny, J. Ramerstorfer, K. Price, M. Brams, M. Ernst, H. Nury, M. Verheij, P. Legrand, D. Bertrand, S. Bertrand, et al. (2012)
PNAS 109, E3028-E3034
   Abstract »    Full Text »    PDF »
Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue.
H. Wang and E. Gouaux (2012)
EMBO Rep. 13, 861-866
   Abstract »    Full Text »    PDF »
Using lithium to probe sequential cation interactions with GAT1.
A.-K. Meinild and I. C. Forster (2012)
Am J Physiol Cell Physiol 302, C1661-C1675
   Abstract »    Full Text »    PDF »
The Mechanistic Basis for Noncompetitive Ibogaine Inhibition of Serotonin and Dopamine Transporters.
S. Bulling, K. Schicker, Y.-W. Zhang, T. Steinkellner, T. Stockner, C. W. Gruber, S. Boehm, M. Freissmuth, G. Rudnick, H. H. Sitte, et al. (2012)
J. Biol. Chem. 287, 18524-18534
   Abstract »    Full Text »    PDF »
4-(4-(Dimethylamino)phenyl)-1-methylpyridinium (APP+) Is a Fluorescent Substrate for the Human Serotonin Transporter.
E. Solis Jr., I. Zdravkovic, I. D. Tomlinson, S. Y. Noskov, S. J. Rosenthal, and L. J. De Felice (2012)
J. Biol. Chem. 287, 8852-8863
   Abstract »    Full Text »    PDF »
Insights into transport mechanism from LeuT engineered to transport tryptophan.
C. L. Piscitelli and E. Gouaux (2012)
EMBO J. 31, 228-235
   Abstract »    Full Text »    PDF »
Probing Binding Pocket of Serotonin Transporter by Single Molecular Force Spectroscopy on Living Cells.
L. Wildling, C. Rankl, T. Haselgrubler, H. J. Gruber, M. Holy, A. H. Newman, M.-F. Zou, R. Zhu, M. Freissmuth, H. H. Sitte, et al. (2012)
J. Biol. Chem. 287, 105-113
   Abstract »    Full Text »    PDF »
To be, or not to be two sites: that is the question about LeuT substrate binding.
N. Reyes and S. Tavoulari (2011)
J. Gen. Physiol. 138, 467-471
   Abstract »    Full Text »    PDF »
SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation.
A. S. Kristensen, J. Andersen, T. N. Jorgensen, L. Sorensen, J. Eriksen, C. J. Loland, K. Stromgaard, and U. Gether (2011)
Pharmacol. Rev. 63, 585-640
   Abstract »    Full Text »    PDF »
Molecular determinants for selective recognition of antidepressants in the human serotonin and norepinephrine transporters.
J. Andersen, N. Stuhr-Hansen, L. Zachariassen, S. Toubro, S. M. R. Hansen, J. N. N. Eildal, A. D. Bond, K. P. Bogeso, B. Bang-Andersen, A. S. Kristensen, et al. (2011)
PNAS 108, 12137-12142
   Abstract »    Full Text »    PDF »
Site-Directed Mutations near Transmembrane Domain 1 Alter Conformation and Function of Norepinephrine and Dopamine Transporters.
B. Guptaroy, R. Fraser, A. Desai, M. Zhang, and M. E. Gnegy (2011)
Mol. Pharmacol. 79, 520-532
   Abstract »    Full Text »    PDF »
Reconstructing a Chloride-binding Site in a Bacterial Neurotransmitter Transporter Homologue.
S. Tavoulari, A. N. Rizwan, L. R. Forrest, and G. Rudnick (2011)
J. Biol. Chem. 286, 2834-2842
   Abstract »    Full Text »    PDF »
GATMD: {gamma}-Aminobutyric Acid Transporter Mutagenesis Database.
C. M. Anderson, P. D. Kidd, and S. Eskandari (2010)
Database 2010, baq028
   Abstract »    Full Text »    PDF »
The High-Affinity Binding Site for Tricyclic Antidepressants Resides in the Outer Vestibule of the Serotonin Transporter.
S. Sarker, R. Weissensteiner, I. Steiner, H. H. Sitte, G. F. Ecker, M. Freissmuth, and S. Sucic (2010)
Mol. Pharmacol. 78, 1026-1035
   Abstract »    Full Text »    PDF »
High-Throughput Screening for TLR3-IFN Regulatory Factor 3 Signaling Pathway Modulators Identifies Several Antipsychotic Drugs as TLR Inhibitors.
J. Zhu, K. Smith, P. N. Hsieh, Y. K. Mburu, S. Chattopadhyay, G. C. Sen, and S. N. Sarkar (2010)
J. Immunol. 184, 5768-5776
   Abstract »    Full Text »    PDF »
Binding and Orientation of Tricyclic Antidepressants within the Central Substrate Site of the Human Serotonin Transporter.
S. Sinning, M. Musgaard, M. Jensen, K. Severinsen, L. Celik, H. Koldso, T. Meyer, M. Bols, H. H. Jensen, B. Schiott, et al. (2010)
J. Biol. Chem. 285, 8363-8374
   Abstract »    Full Text »    PDF »
Directed Evolution Reveals Hidden Properties of VMAT, a Neurotransmitter Transporter.
Y. Gros and S. Schuldiner (2010)
J. Biol. Chem. 285, 5076-5084
   Abstract »    Full Text »    PDF »
Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter.
J. Andersen, L. Olsen, K. B. Hansen, O. Taboureau, F. S. Jorgensen, A. M. Jorgensen, B. Bang-Andersen, J. Egebjerg, K. Stromgaard, and A. S. Kristensen (2010)
J. Biol. Chem. 285, 2051-2063
   Abstract »    Full Text »    PDF »
Extracellular Loops 2 and 4 of GLYT2 Are Required for N-Arachidonylglycine Inhibition of Glycine Transport.
A. R. Edington, A. A. McKinzie, A. J. Reynolds, M. Kassiou, R. M. Ryan, and R. J. Vandenberg (2009)
J. Biol. Chem. 284, 36424-36430
   Abstract »    Full Text »    PDF »
Ligand Effects on Cross-linking Support a Conformational Mechanism for Serotonin Transport.
Z. Tao, Y.-W. Zhang, A. Agyiri, and G. Rudnick (2009)
J. Biol. Chem. 284, 33807-33814
   Abstract »    Full Text »    PDF »
The Rocking Bundle: A Mechanism for Ion-Coupled Solute Flux by Symmetrical Transporters.
L. R. Forrest and G. Rudnick (2009)
Physiology 24, 377-386
   Abstract »    Full Text »    PDF »
Fluoxetine (Prozac) Binding to Serotonin Transporter Is Modulated by Chloride and Conformational Changes.
S. Tavoulari, L. R. Forrest, and G. Rudnick (2009)
J. Neurosci. 29, 9635-9643
   Abstract »    Full Text »    PDF »
Location of the Antidepressant Binding Site in the Serotonin Transporter: IMPORTANCE OF SER-438 IN RECOGNITION OF CITALOPRAM AND TRICYCLIC ANTIDEPRESSANTS.
J. Andersen, O. Taboureau, K. B. Hansen, L. Olsen, J. Egebjerg, K. Stromgaard, and A. S. Kristensen (2009)
J. Biol. Chem. 284, 10276-10284
   Abstract »    Full Text »    PDF »
Binding of an octylglucoside detergent molecule in the second substrate (S2) site of LeuT establishes an inhibitor-bound conformation.
M. Quick, A.-M. L. Winther, L. Shi, P. Nissen, H. Weinstein, and J. A. Javitch (2009)
PNAS 106, 5563-5568
   Abstract »    Full Text »    PDF »
Amino acid transceptors: gate keepers of nutrient exchange and regulators of nutrient signaling.
H. S. Hundal and P. M. Taylor (2009)
Am J Physiol Endocrinol Metab 296, E603-E613
   Abstract »    Full Text »    PDF »
The molecular logic of sodium-coupled neurotransmitter transporters.
E. Gouaux (2009)
Phil Trans R Soc B 364, 149-154
   Abstract »    Full Text »    PDF »
Amitriptyline Activates Cardiac Ryanodine Channels and Causes Spontaneous Sarcoplasmic Reticulum Calcium Release.
N. Chopra, D. Laver, S. S. Davies, and B. C. Knollmann (2009)
Mol. Pharmacol. 75, 183-195
   Abstract »    Full Text »    PDF »
A Competitive Inhibitor Traps LeuT in an Open-to-Out Conformation.
S. K. Singh, C. L. Piscitelli, A. Yamashita, and E. Gouaux (2008)
Science 322, 1655-1661
   Abstract »    Full Text »    PDF »
Kinetic and Thermodynamic Assessment of Binding of Serotonin Transporter Inhibitors.
R. S. Martin, R. A. Henningsen, A. Suen, S. Apparsundaram, B. Leung, Z. Jia, R. K. Kondru, and M. E. Milla (2008)
J. Pharmacol. Exp. Ther. 327, 991-1000
   Abstract »    Full Text »    PDF »
Antidepressants Targeting the Serotonin Reuptake Transporter Act via a Competitive Mechanism.
S. Apparsundaram, D. J. Stockdale, R. A. Henningsen, M. E. Milla, and R. S. Martin (2008)
J. Pharmacol. Exp. Ther. 327, 982-990
   Abstract »    Full Text »    PDF »
Structure and Molecular Mechanism of a Nucleobase-Cation-Symport-1 Family Transporter.
S. Weyand, T. Shimamura, S. Yajima, S. Suzuki, O. Mirza, K. Krusong, E. P. Carpenter, N. G. Rutherford, J. M. Hadden, J. O'Reilly, et al. (2008)
Science 322, 709-713
   Abstract »    Full Text »    PDF »
STRUCTURAL BIOLOGY: Symmetric Transporters for Asymmetric Transport.
N. K. Karpowich and D.-N. Wang (2008)
Science 321, 781-782
   Abstract »    Full Text »    PDF »
Mechanism for alternating access in neurotransmitter transporters.
L. R. Forrest, Y.-W. Zhang, M. T. Jacobs, J. Gesmonde, L. Xie, B. H. Honig, and G. Rudnick (2008)
PNAS 105, 10338-10343
   Abstract »    Full Text »    PDF »
An Intracellular Interaction Network Regulates Conformational Transitions in the Dopamine Transporter.
J. Kniazeff, L. Shi, C. J. Loland, J. A. Javitch, H. Weinstein, and U. Gether (2008)
J. Biol. Chem. 283, 17691-17701
   Abstract »    Full Text »    PDF »
Comparative Molecular Field Analysis Using Selectivity Fields Reveals Residues in the Third Transmembrane Helix of the Serotonin Transporter Associated with Substrate and Antagonist Recognition.
C. C. Walline, D. E. Nichols, F. I. Carroll, and E. L. Barker (2008)
J. Pharmacol. Exp. Ther. 325, 791-800
   Abstract »    Full Text »    PDF »
The Substrates of the {gamma}-Aminobutyric Acid Transporter GAT-1 Induce Structural Rearrangements around the Interface of Transmembrane Domains 1 and 6.
A. Rosenberg and B. I. Kanner (2008)
J. Biol. Chem. 283, 14376-14383
   Abstract »    Full Text »    PDF »
Labeling of Dopamine Transporter Transmembrane Domain 1 with the Tropane Ligand N-[4-(4-Azido-3-[125I]iodophenyl)butyl]-2{beta}-carbomethoxy-3{beta}-(4-chlorophenyl)tropane Implicates Proximity of Cocaine and Substrate Active Sites.
M. L. Parnas, J. D. Gaffaney, M. F. Zou, J. R. Lever, A. H. Newman, and R. A. Vaughan (2008)
Mol. Pharmacol. 73, 1141-1150
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882