Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 317 (5845): 1746-1748

Copyright © 2007 by the American Association for the Advancement of Science

Structure of the Zinc Transporter YiiP

Min Lu, and Dax Fu*

Abstract: YiiP is a membrane transporter that catalyzes Zn2+/H+ exchange across the inner membrane of Escherichia coli. Mammalian homologs of YiiP play critical roles in zinc homeostasis and cell signaling. Here, we report the x-ray structure of YiiP in complex with zinc at 3.8 angstrom resolution. YiiP is a homodimer held together in a parallel orientation through four Zn2+ ions at the interface of the cytoplasmic domains, whereas the two transmembrane domains swing out to yield a Y-shaped structure. In each protomer, the cytoplasmic domain adopts a metallochaperone-like protein fold; the transmembrane domain features a bundle of six transmembrane helices and a tetrahedral Zn2+ binding site located in a cavity that is open to both the membrane outer leaflet and the periplasm.

Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA.

* To whom correspondence should be addressed. E-mail: dax{at}

In Situ Dimerization of Multiple Wild Type and Mutant Zinc Transporters in Live Cells Using Bimolecular Fluorescence Complementation.
I. Lasry, Y. Golan, B. Berman, N. Amram, F. Glaser, and Y. G. Assaraf (2014)
J. Biol. Chem. 289, 7275-7292
   Abstract »    Full Text »    PDF »
Inward-facing conformation of the zinc transporter YiiP revealed by cryoelectron microscopy.
N. Coudray, S. Valvo, M. Hu, R. Lasala, C. Kim, M. Vink, M. Zhou, D. Provasi, M. Filizola, J. Tao, et al. (2013)
PNAS 110, 2140-2145
   Abstract »    Full Text »    PDF »
Structures of a Na+-coupled, substrate-bound MATE multidrug transporter.
M. Lu, J. Symersky, M. Radchenko, A. Koide, Y. Guo, R. Nie, and S. Koide (2013)
PNAS 110, 2099-2104
   Abstract »    Full Text »    PDF »
Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.
E. Hoch, W. Lin, J. Chai, M. Hershfinkel, D. Fu, and I. Sekler (2012)
PNAS 109, 7202-7207
   Abstract »    Full Text »    PDF »
Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry.
J. M. Arguello, D. Raimunda, and M. Gonzalez-Guerrero (2012)
J. Biol. Chem. 287, 13510-13517
   Abstract »    Full Text »    PDF »
Metal Selectivity Determinants in a Family of Transition Metal Transporters.
D. Podar, J. Scherer, Z. Noordally, P. Herzyk, D. Nies, and D. Sanders (2012)
J. Biol. Chem. 287, 3185-3196
   Abstract »    Full Text »    PDF »
Selective Electrodiffusion of Zinc Ions in a Zrt-, Irt-like Protein, ZIPB.
W. Lin, J. Chai, J. Love, and D. Fu (2010)
J. Biol. Chem. 285, 39013-39020
   Abstract »    Full Text »    PDF »
Cell Number Regulator1 Affects Plant and Organ Size in Maize: Implications for Crop Yield Enhancement and Heterosis.
M. Guo, M. A. Rupe, J. A. Dieter, J. Zou, D. Spielbauer, K. E. Duncan, R. J. Howard, Z. Hou, and C. R. Simmons (2010)
PLANT CELL 22, 1057-1073
   Abstract »    Full Text »    PDF »
Demonstration and Characterization of the Heterodimerization of ZnT5 and ZnT6 in the Early Secretory Pathway.
A. Fukunaka, T. Suzuki, Y. Kurokawa, T. Yamazaki, N. Fujiwara, K. Ishihara, H. Migaki, K. Okumura, S. Masuda, Y. Yamaguchi-Iwai, et al. (2009)
J. Biol. Chem. 284, 30798-30806
   Abstract »    Full Text »    PDF »
Solution structure of a paradigm ArsR family zinc sensor in the DNA-bound state.
A. I. Arunkumar, G. C. Campanello, and D. P. Giedroc (2009)
PNAS 106, 18177-18182
   Abstract »    Full Text »    PDF »
Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes-Associated Variants.
T. J. Nicolson, E. A. Bellomo, N. Wijesekara, M. K. Loder, J. M. Baldwin, A. V. Gyulkhandanyan, V. Koshkin, A. I. Tarasov, R. Carzaniga, K. Kronenberger, et al. (2009)
Diabetes 58, 2070-2083
   Abstract »    Full Text »    PDF »
Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-{gamma} expression in activated human T cells.
T. B. Aydemir, J. P. Liuzzi, S. McClellan, and R. J. Cousins (2009)
J. Leukoc. Biol. 86, 337-348
   Abstract »    Full Text »    PDF »
The Cation Diffusion Facilitator Gene cdf-2 Mediates Zinc Metabolism in Caenorhabditis elegans.
D. E. Davis, H. C. Roh, K. Deshmukh, J. J. Bruinsma, D. L. Schneider, J. Guthrie, J. D. Robertson, and K. Kornfeld (2009)
Genetics 182, 1015-1033
   Abstract »    Full Text »    PDF »
Identification of the Zn2+ Binding Site and Mode of Operation of a Mammalian Zn2+ Transporter.
E. Ohana, E. Hoch, C. Keasar, T. Kambe, O. Yifrach, M. Hershfinkel, and I. Sekler (2009)
J. Biol. Chem. 284, 17677-17686
   Abstract »    Full Text »    PDF »
Copper Transport Activity of Yeast Ctr1 Is Down-regulated via Its C Terminus in Response to Excess Copper.
X. Wu, D. Sinani, H. Kim, and J. Lee (2009)
J. Biol. Chem. 284, 4112-4122
   Abstract »    Full Text »    PDF »
A Single Amino Acid Change in the Yeast Vacuolar Metal Transporters Zrc1 and Cot1 Alters Their Substrate Specificity.
H. Lin, A. Kumanovics, J. M. Nelson, D. E. Warner, D. M. Ward, and J. Kaplan (2008)
J. Biol. Chem. 283, 33865-33873
   Abstract »    Full Text »    PDF »
Glutathione and Transition-Metal Homeostasis in Escherichia coli.
K. Helbig, C. Bleuel, G. J. Krauss, and D. H. Nies (2008)
J. Bacteriol. 190, 5431-5438
   Abstract »    Full Text »    PDF »
Deletion of a Histidine-rich Loop of AtMTP1, a Vacuolar Zn2+/H+ Antiporter of Arabidopsis thaliana, Stimulates the Transport Activity.
M. Kawachi, Y. Kobae, T. Mimura, and M. Maeshima (2008)
J. Biol. Chem. 283, 8374-8383
   Abstract »    Full Text »    PDF »
BIOCHEMISTRY: How Cells Control Zinc Homeostasis.
D. H. Nies (2007)
Science 317, 1695-1696
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882