Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 318 (5847): 103-106

Copyright © 2007 by the American Association for the Advancement of Science

Glia Promote Local Synaptogenesis Through UNC-6 (Netrin) Signaling in C. elegans

Daniel A. Colón-Ramos,1 Milica A. Margeta,12 Kang Shen12*

Abstract: Neural circuits are assembled through the coordinated innervation of pre- and postsynaptic partners. We show that connectivity between two interneurons, AIY and RIA, in Caenorhabditis elegans is orchestrated by a pair of glial cells that express UNC-6 (netrin). In the postsynaptic neuron RIA, the netrin receptor UNC-40 (DCC, deleted in colorectal cancer) plays a conventional guidance role, directing outgrowth of the RIA process ventrally toward the glia. In the presynaptic neuron AIY, UNC-40 (DCC) plays an unexpected and previously uncharacterized role: It cell-autonomously promotes assembly of presynaptic terminals in the immediate vicinity of the glial cell endfeet. These results indicate that netrin can be used both for guidance and local synaptogenesis and suggest that glial cells can function as guideposts during the assembly of neural circuits in vivo.

1 Department of Biological Sciences, Stanford University, 144 Herrin Laboratories, Stanford, CA 94305–5020, USA.
2 Neurosciences Program, Stanford University, Stanford, CA 94305–5020, USA.

* To whom correspondence should be addressed. E-mail: kangshen{at}

Netrin and Frazzled Regulate Presynaptic Gap Junctions at a Drosophila Giant Synapse.
B. O. Orr, M. A. Borgen, P. M. Caruccio, and R. K. Murphey (2014)
J. Neurosci. 34, 5416-5430
   Abstract »    Full Text »    PDF »
MIG-10 (lamellipodin) has netrin-independent functions and is a FOS-1A transcriptional target during anchor cell invasion in C. elegans.
Z. Wang, Q. Chi, and D. R. Sherwood (2014)
Development 141, 1342-1353
   Abstract »    Full Text »    PDF »
Netrin-1 Promotes Excitatory Synaptogenesis between Cortical Neurons by Initiating Synapse Assembly.
J. S. Goldman, M. A. Ashour, M. H. Magdesian, N. X. Tritsch, S. N. Harris, N. Christofi, R. Chemali, Y. E. Stern, G. Thompson-Steckel, P. Gris, et al. (2013)
J. Neurosci. 33, 17278-17289
   Abstract »    Full Text »    PDF »
Daniel Colon-Ramos: Observing and making connections.
C. Sedwick (2013)
J. Cell Biol. 203, 168-169
   Full Text »    PDF »
Cell biology in neuroscience: Cellular and molecular mechanisms underlying presynapse formation.
P. H. Chia, P. Li, and K. Shen (2013)
J. Cell Biol. 203, 11-22
   Abstract »    Full Text »    PDF »
The neogenin/DCC homolog UNC-40 promotes BMP signaling via the RGM protein DRAG-1 in C. elegans.
C. Tian, H. Shi, S. Xiong, F. Hu, W.-C. Xiong, and J. Liu (2013)
Development 140, 4070-4080
   Abstract »    Full Text »    PDF »
Sumoylated MEF2A Coordinately Eliminates Orphan Presynaptic Sites and Promotes Maturation of Presynaptic Boutons.
T. Yamada, Y. Yang, J. Huang, G. Coppola, D. H. Geschwind, and A. Bonni (2013)
J. Neurosci. 33, 4726-4740
   Abstract »    Full Text »    PDF »
Serotonergic Neurosecretory Synapse Targeting Is Controlled by Netrin-Releasing Guidepost Neurons in Caenorhabditis elegans.
J. C. Nelson and D. A. Colon-Ramos (2013)
J. Neurosci. 33, 1366-1376
   Abstract »    Full Text »    PDF »
LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans.
P. Li, K. M. Collins, M. R. Koelle, and K. Shen (2013)
eLife Sci 2, e00378
   Abstract »    Full Text »    PDF »
Synaptic vesicle clustering requires a distinct MIG-10/Lamellipodin isoform and ABI-1 downstream from Netrin.
A. K. H. Stavoe, J. C. Nelson, L. A. Martinez-Velazquez, M. Klein, A. D. T. Samuel, and D. A. Colon-Ramos (2012)
Genes & Dev. 26, 2206-2221
   Abstract »    Full Text »    PDF »
Netrin instructs synaptic vesicle clustering through Rac GTPase, MIG-10, and the actin cytoskeleton.
A. K. H. Stavoe and D. A. Colon-Ramos (2012)
J. Cell Biol. 197, 75-88
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans Flamingo Cadherin fmi-1 Regulates GABAergic Neuronal Development.
E. H. Najarro, L. Wong, M. Zhen, E. P. Carpio, A. Goncharov, G. Garriga, E. A. Lundquist, Y. Jin, and B. D. Ackley (2012)
J. Neurosci. 32, 4196-4211
   Abstract »    Full Text »    PDF »
A conserved PTEN/FOXO pathway regulates neuronal morphology during C. elegans development.
R. Christensen, L. de la Torre-Ubieta, A. Bonni, and D. A. Colon-Ramos (2011)
Development 138, 5257-5267
   Abstract »    Full Text »    PDF »
Different levels of the Tripartite motif protein, Anomalies in sensory axon patterning (Asap), regulate distinct axonal projections of Drosophila sensory neurons.
R. K. Morikawa, T. Kanamori, K.-i. Yasunaga, and K. Emoto (2011)
PNAS 108, 19389-19394
   Abstract »    Full Text »    PDF »
S6 kinase localizes to the presynaptic active zone and functions with PDK1 to control synapse development.
L. Cheng, C. Locke, and G. W. Davis (2011)
J. Cell Biol. 194, 921-935
   Abstract »    Full Text »    PDF »
The Netrin Receptor DCC Is Required in the Pubertal Organization of Mesocortical Dopamine Circuitry.
C. Manitt, A. Mimee, C. Eng, M. Pokinko, T. Stroh, H. M. Cooper, B. Kolb, and C. Flores (2011)
J. Neurosci. 31, 8381-8394
   Abstract »    Full Text »    PDF »
Radial Glia: Progenitor, Pathway, and Partner.
M. Sild and E. S. Ruthazer (2011)
Neuroscientist 17, 288-302
   Abstract »    PDF »
Netrins: versatile extracellular cues with diverse functions.
K. L. W. Sun, J. P. Correia, and T. E. Kennedy (2011)
Development 138, 2153-2169
   Abstract »    Full Text »    PDF »
Genes Required for Cellular UNC-6/Netrin Localization in Caenorhabditis elegans.
T. Asakura, N. Waga, K.-i. Ogura, and Y. Goshima (2010)
Genetics 185, 573-585
   Abstract »    Full Text »    PDF »
Wnt-Ror signaling to SIA and SIB neurons directs anterior axon guidance and nerve ring placement in C. elegans.
J. R. Kennerdell, R. D. Fetter, and C. I. Bargmann (2009)
Development 136, 3801-3810
   Abstract »    Full Text »    PDF »
Cell Adhesion, the Backbone of the Synapse: "Vertebrate" and "Invertebrate" Perspectives.
N. Giagtzoglou, C. V. Ly, and H. J. Bellen (2009)
Cold Spring Harb Perspect Biol 1, a003079
   Abstract »    Full Text »    PDF »
Control of CNS Synapse Development by {gamma}-Protocadherin-Mediated Astrocyte-Neuron Contact.
A. M. Garrett and J. A. Weiner (2009)
J. Neurosci. 29, 11723-11731
   Abstract »    Full Text »    PDF »
Netrin Participates in the Development of Retinotectal Synaptic Connectivity by Modulating Axon Arborization and Synapse Formation in the Developing Brain.
C. Manitt, A. M. Nikolakopoulou, D. R. Almario, S. A. Nguyen, and S. Cohen-Cory (2009)
J. Neurosci. 29, 11065-11077
   Abstract »    Full Text »    PDF »
A glial DEG/ENaC channel functions with neuronal channel DEG-1 to mediate specific sensory functions in C. elegans.
Y. Wang, A. Apicella Jr, S.-K. Lee, M. Ezcurra, R. D. Slone, M. Goldmit, W. R. Schafer, S. Shaham, M. Driscoll, and L. Bianchi (2008)
EMBO J. 27, 2388-2399
   Abstract »    Full Text »    PDF »
CLEC-38, A Transmembrane Protein with C-Type Lectin-Like Domains, Negatively Regulates UNC-40-Mediated Axon Outgrowth and Promotes Presynaptic Development in Caenorhabditis elegans.
G. Kulkarni, H. Li, and W. G. Wadsworth (2008)
J. Neurosci. 28, 4541-4550
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882