Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 318 (5848): 261-265

Copyright © 2007 by the American Association for the Advancement of Science

FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis

Mariko Sawa, Dmitri A. Nusinow, Steve A. Kay, Takato Imaizumi*

Abstract: Precise timing of CONSTANS (CO) gene expression is necessary for day-length discrimination for photoperiodic flowering. The FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1), and GIGANTEA (GI) proteins regulate CO transcription in Arabidopsis. We demonstrate that FKF1 and GI proteins form a complex in a blue-light–dependent manner. The timing of this interaction regulates the timing of daytime CO expression. FKF1 function is dependent on GI, which interacts with a CO repressor, CYCLING DOF FACTOR 1 (CDF1), and controls CDF1 stability. GI, FKF1, and CDF1 proteins associate with CO chromatin. Thus, the FKF1-GI complex forms on the CO promoter in late afternoon to regulate CO expression, providing a mechanistic view of how the coincidence of light with circadian timing regulates photoperiodic flowering.

Department of Biochemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.

Present address: Division of Biological Sciences, University of California, San Diego, 9800 Gilman Drive #0130, La Jolla, CA 92093–0116, USA.

* To whom correspondence should be addressed. E-mail: timaizumi{at}

Data assimilation constrains new connections and components in a complex, eukaryotic circadian clock model.
A. Pokhilko, S. K. Hodge, K. Stratford, K. Knox, K. D. Edwards, A. W. Thomson, T. Mizuno, and A. J. Millar (2014)
Mol Syst Biol 6, 416
   Abstract »    Full Text »    PDF »
The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops.
A. Pokhilko, A. P. Fernandez, K. D. Edwards, M. M. Southern, K. J. Halliday, and A. J. Millar (2014)
Mol Syst Biol 8, 574
   Abstract »    Full Text »    PDF »
Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
R. Shrestha, J. Gomez-Ariza, V. Brambilla, and F. Fornara (2014)
Ann. Bot.
   Abstract »    Full Text »    PDF »
Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses.
A.-R. Corrales, S. G. Nebauer, L. Carrillo, P. Fernandez-Nohales, J. Marques, B. Renau-Morata, A. Granell, S. Pollmann, J. Vicente-Carbajosa, R.-V. Molina, et al. (2014)
J. Exp. Bot. 65, 995-1012
   Abstract »    Full Text »    PDF »
The time of day effects of warm temperature on flowering time involve PIF4 and PIF5.
B. C. Thines, Y. Youn, M. I. Duarte, and F. G. Harmon (2014)
J. Exp. Bot. 65, 1141-1151
   Abstract »    Full Text »    PDF »
The role of microRNAs in the control of flowering time.
E. Spanudakis and S. Jackson (2014)
J. Exp. Bot. 65, 365-380
   Abstract »    Full Text »    PDF »
Light-induced Conformational Changes of LOV1 (Light Oxygen Voltage-sensing Domain 1) and LOV2 Relative to the Kinase Domain and Regulation of Kinase Activity in Chlamydomonas Phototropin.
K. Okajima, Y. Aihara, Y. Takayama, M. Nakajima, S. Kashojiya, T. Hikima, T. Oroguchi, A. Kobayashi, Y. Sekiguchi, M. Yamamoto, et al. (2014)
J. Biol. Chem. 289, 413-422
   Abstract »    Full Text »    PDF »
Mathematical Models Light Up Plant Signaling.
Y. H. Chew, R. W. Smith, H. J. Jones, D. D. Seaton, R. Grima, and K. J. Halliday (2014)
PLANT CELL 26, 5-20
   Abstract »    Full Text »    PDF »
Identification of Arabidopsis SUMO-interacting proteins that regulate chromatin activity and developmental transitions.
N. Elrouby, M. V. Bonequi, A. Porri, and G. Coupland (2013)
PNAS 110, 19956-19961
   Abstract »    Full Text »    PDF »
Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms.
H. Liu, Q. Wang, Y. Liu, X. Zhao, T. Imaizumi, D. E. Somers, E. M. Tobin, and C. Lin (2013)
PNAS 110, 17582-17587
   Abstract »    Full Text »    PDF »
CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize.
Q. Yang, Z. Li, W. Li, L. Ku, C. Wang, J. Ye, K. Li, N. Yang, Y. Li, T. Zhong, et al. (2013)
PNAS 110, 16969-16974
   Abstract »    Full Text »    PDF »
The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA.
J. Kim, R. Geng, R. A. Gallenstein, and D. E. Somers (2013)
Development 140, 4060-4069
   Abstract »    Full Text »    PDF »
Plant E3 Ligases: Flexible Enzymes in a Sessile World.
L. Chen and H. Hellmann (2013)
Mol Plant 6, 1388-1404
   Abstract »    Full Text »    PDF »
Latitudinal clines: an evolutionary view on biological rhythms.
R. A. Hut, S. Paolucci, R. Dor, C. P. Kyriacou, and S. Daan (2013)
Proc R Soc B 280, 20130433
   Abstract »    Full Text »    PDF »
TWIN SISTER OF FT, GIGANTEA, and CONSTANS Have a Positive But Indirect Effect on Blue Light-Induced Stomatal Opening in Arabidopsis.
E. Ando, M. Ohnishi, Y. Wang, T. Matsushita, A. Watanabe, Y. Hayashi, M. Fujii, J. F. Ma, S.-i. Inoue, and T. Kinoshita (2013)
Plant Physiology 162, 1529-1538
   Abstract »    Full Text »    PDF »
GIGANTEA Enables Drought Escape Response via Abscisic Acid-Dependent Activation of the Florigens and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1.
M. Riboni, M. Galbiati, C. Tonelli, and L. Conti (2013)
Plant Physiology 162, 1706-1719
   Abstract »    Full Text »    PDF »
Ubiquitin-Specific Proteases UBP12 and UBP13 Act in Circadian Clock and Photoperiodic Flowering Regulation in Arabidopsis.
X. Cui, F. Lu, Y. Li, Y. Xue, Y. Kang, S. Zhang, Q. Qiu, X. Cui, S. Zheng, B. Liu, et al. (2013)
Plant Physiology 162, 897-906
   Abstract »    Full Text »    PDF »
The Coincidence of Critical Day Length Recognition for Florigen Gene Expression and Floral Transition under Long-Day Conditions in Rice.
H. Itoh and T. Izawa (2013)
Mol Plant 6, 635-649
   Abstract »    Full Text »    PDF »
LC2 and OsVIL2 Promote Rice Flowering by Photoperoid-Induced Epigenetic Silencing of OsLF.
J. Wang, J. Hu, Q. Qian, and H.-W. Xue (2013)
Mol Plant 6, 514-527
   Abstract »    Full Text »    PDF »
OsELF3 Is Involved in Circadian Clock Regulation for Promoting Flowering under Long-Day Conditions in Rice.
Y. Yang, Q. Peng, G.-X. Chen, X.-H. Li, and C.-Y. Wu (2013)
Mol Plant 6, 202-215
   Abstract »    Full Text »    PDF »
Interacting duplications, fluctuating selection, and convergence: the complex dynamics of flowering time evolution during sunflower domestication.
B. K. Blackman (2013)
J. Exp. Bot. 64, 421-431
   Abstract »    Full Text »    PDF »
Evolution of Three LOV Blue Light Receptor Families in Green Plants and Photosynthetic Stramenopiles: Phototropin, ZTL/FKF1/LKP2 and Aureochrome.
N. Suetsugu and M. Wada (2013)
Plant Cell Physiol. 54, 8-23
   Abstract »    Full Text »    PDF »
Transcription Repressor HANABA TARANU Controls Flower Development by Integrating the Actions of Multiple Hormones, Floral Organ Specification Genes, and GATA3 Family Genes in Arabidopsis.
X. Zhang, Y. Zhou, L. Ding, Z. Wu, R. Liu, and E. M. Meyerowitz (2013)
PLANT CELL 25, 83-101
   Abstract »    Full Text »    PDF »
The E3 Ubiquitin Ligase HOS1 Regulates Arabidopsis Flowering by Mediating CONSTANS Degradation Under Cold Stress.
J.-H. Jung, P. J. Seo, and C.-M. Park (2012)
J. Biol. Chem. 287, 43277-43287
   Abstract »    Full Text »    PDF »
Circadian Clock- and PIF4-Controlled Plant Growth: A Coincidence Mechanism Directly Integrates a Hormone Signaling Network into the Photoperiodic Control of Plant Architectures in Arabidopsis thaliana.
Y. Nomoto, S. Kubozono, T. Yamashino, N. Nakamichi, and T. Mizuno (2012)
Plant Cell Physiol. 53, 1950-1964
   Abstract »    Full Text »    PDF »
Florigenic and Antiflorigenic Signaling in Plants.
I. G. Matsoukas, A. J. Massiah, and B. Thomas (2012)
Plant Cell Physiol. 53, 1827-1842
   Abstract »    Full Text »    PDF »
The {gamma}-Carbonic Anhydrase Subcomplex of Mitochondrial Complex I Is Essential for Development and Important for Photomorphogenesis of Arabidopsis.
Q. Wang, R. Fristedt, X. Yu, Z. Chen, H. Liu, Y. Lee, H. Guo, S. S. Merchant, and C. Lin (2012)
Plant Physiology 160, 1373-1383
   Abstract »    Full Text »    PDF »
CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses.
A. G. Lai, C. J. Doherty, B. Mueller-Roeber, S. A. Kay, J. H. M. Schippers, and P. P. Dijkwel (2012)
PNAS 109, 17129-17134
   Abstract »    Full Text »    PDF »
FKF1 Conveys Timing Information for CONSTANS Stabilization in Photoperiodic Flowering.
Y. H. Song, R. W. Smith, B. J. To, A. J. Millar, and T. Imaizumi (2012)
Science 336, 1045-1049
   Abstract »    Full Text »    PDF »
LOV Domain-Containing F-Box Proteins: Light-Dependent Protein Degradation Modules in Arabidopsis.
S. Ito, Y. H. Song, and T. Imaizumi (2012)
Mol Plant 5, 573-582
   Abstract »    Full Text »    PDF »
LOV to BLUF: Flavoprotein Contributions to the Optogenetic Toolkit.
J. M. Christie, J. Gawthorne, G. Young, N. J. Fraser, and A. J. Roe (2012)
Mol Plant 5, 533-544
   Abstract »    Full Text »    PDF »
GIGANTEA and EARLY FLOWERING 4 in Arabidopsis Exhibit Differential Phase-Specific Genetic Influences over a Diurnal Cycle.
Y. Kim, M. Yeom, H. Kim, J. Lim, H. J. Koo, D. Hwang, D. Somers, and H. G. Nam (2012)
Mol Plant 5, 678-687
   Abstract »    Full Text »    PDF »
Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response?.
T. Ruts, S. Matsubara, A. Wiese-Klinkenberg, and A. Walter (2012)
J. Exp. Bot. 63, 3339-3351
   Abstract »    Full Text »    PDF »
The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering.
A. Lazaro, F. Valverde, M. Pineiro, and J. A. Jarillo (2012)
PLANT CELL 24, 982-999
   Abstract »    Full Text »    PDF »
FLOWERING BHLH transcriptional activators control expression of the photoperiodic flowering regulator CONSTANS in Arabidopsis.
S. Ito, Y. H. Song, A. R. Josephson-Day, R. J. Miller, G. Breton, R. G. Olmstead, and T. Imaizumi (2012)
PNAS 109, 3582-3587
   Abstract »    Full Text »    PDF »
CCA1 and ELF3 Interact in the Control of Hypocotyl Length and Flowering Time in Arabidopsis.
S. X. Lu, C. J. Webb, S. M. Knowles, S. H. J. Kim, Z. Wang, and E. M. Tobin (2012)
Plant Physiology 158, 1079-1088
   Abstract »    Full Text »    PDF »
Photobodies in Light Signaling.
E. K. Van Buskirk, P. V. Decker, and M. Chen (2012)
Plant Physiology 158, 52-60
   Full Text »    PDF »
Molecular Dissection of the Roles of Phytochrome in Photoperiodic Flowering in Rice.
A. Osugi, H. Itoh, K. Ikeda-Kawakatsu, M. Takano, and T. Izawa (2011)
Plant Physiology 157, 1128-1137
   Abstract »    Full Text »    PDF »
Molecular Mechanisms Underlying the Arabidopsis Circadian Clock.
N. Nakamichi (2011)
Plant Cell Physiol. 52, 1709-1718
   Abstract »    Full Text »    PDF »
Characterization of Oncidium 'Gower Ramsey' Transcriptomes using 454 GS-FLX Pyrosequencing and Their Application to the Identification of Genes Associated with Flowering Time.
Y.-Y. Chang, Y.-W. Chu, C.-W. Chen, W.-M. Leu, H.-F. Hsu, and C.-H. Yang (2011)
Plant Cell Physiol. 52, 1532-1545
   Abstract »    Full Text »    PDF »
PHYTOCHROME-INTERACTING FACTOR 4 and 5 (PIF4 and PIF5) Activate the Homeobox ATHB2 and Auxin-Inducible IAA29 Genes in the Coincidence Mechanism Underlying Photoperiodic Control of Plant Growth of Arabidopsis thaliana.
A. Kunihiro, T. Yamashino, N. Nakamichi, Y. Niwa, H. Nakanishi, and T. Mizuno (2011)
Plant Cell Physiol. 52, 1315-1329
   Abstract »    Full Text »    PDF »
GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana.
M. Sawa and S. A. Kay (2011)
PNAS 108, 11698-11703
   Abstract »    Full Text »    PDF »
A Map-Based Cloning Strategy Employing a Residual Heterozygous Line Reveals that the GIGANTEA Gene Is Involved in Soybean Maturity and Flowering.
S. Watanabe, Z. Xia, R. Hideshima, Y. Tsubokura, S. Sato, N. Yamanaka, R. Takahashi, T. Anai, S. Tabata, K. Kitamura, et al. (2011)
Genetics 188, 395-407
   Abstract »    Full Text »    PDF »
CONSTANS and the evolutionary origin of photoperiodic timing of flowering.
F. Valverde (2011)
J. Exp. Bot. 62, 2453-2463
   Abstract »    Full Text »    PDF »
Os-GIGANTEA Confers Robust Diurnal Rhythms on the Global Transcriptome of Rice in the Field.
T. Izawa, M. Mihara, Y. Suzuki, M. Gupta, H. Itoh, A. J. Nagano, R. Motoyama, Y. Sawada, M. Yano, M. Y. Hirai, et al. (2011)
PLANT CELL 23, 1741-1755
   Abstract »    Full Text »    PDF »
Constitutive expression of the GIGANTEA Ortholog Affects Circadian Rhythms and Suppresses One-shot Induction of Flowering in Pharbitis nil, a Typical Short-day Plant.
Y. Higuchi, K. Sage-Ono, R. Sasaki, N. Ohtsuki, A. Hoshino, S. Iida, H. Kamada, and M. Ono (2011)
Plant Cell Physiol. 52, 638-650
   Abstract »    Full Text »    PDF »
Molecular Evolution and Selection Patterns of Plant F-Box Proteins with C-Terminal Kelch Repeats.
N. Schumann, A. Navarro-Quezada, K. Ullrich, C. Kuhl, and M. Quint (2011)
Plant Physiology 155, 835-850
   Abstract »    Full Text »    PDF »
Contributions of Flowering Time Genes to Sunflower Domestication and Improvement.
B. K. Blackman, D. A. Rasmussen, J. L. Strasburg, A. R. Raduski, J. M. Burke, S. J. Knapp, S. D. Michaels, and L. H. Rieseberg (2011)
Genetics 187, 271-287
   Abstract »    Full Text »    PDF »
Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis.
J. Li, Y. Li, S. Chen, and L. An (2010)
J. Exp. Bot. 61, 4221-4230
   Abstract »    Full Text »    PDF »
Conservation of Arabidopsis thaliana Photoperiodic Flowering Time Genes in Onion (Allium cepa L.).
A. Taylor, A. J. Massiah, and B. Thomas (2010)
Plant Cell Physiol. 51, 1638-1647
   Abstract »    Full Text »    PDF »
Genomewide Characterization of the Light-Responsive and Clock-Controlled Output Pathways in Lotus japonicus with Special Emphasis of its Uniqueness.
N. Ono, K. Ishida, T. Yamashino, H. Nakanishi, S. Sato, S. Tabata, and T. Mizuno (2010)
Plant Cell Physiol. 51, 1800-1814
   Abstract »    Full Text »    PDF »
Circadian Clock Components Regulate Entry and Affect Exit of Seasonal Dormancy as Well as Winter Hardiness in Populus Trees.
C. Ibanez, I. Kozarewa, M. Johansson, E. Ogren, A. Rohde, and M. E. Eriksson (2010)
Plant Physiology 153, 1823-1833
   Abstract »    Full Text »    PDF »
DAY NEUTRAL FLOWERING Represses CONSTANS to Prevent Arabidopsis Flowering Early in Short Days.
K. Morris, S. Thornber, L. Codrai, C. Richardson, A. Craig, A. Sadanandom, B. Thomas, and S. Jackson (2010)
PLANT CELL 22, 1118-1128
   Abstract »    Full Text »    PDF »
F-Box Proteins FKF1 and LKP2 Act in Concert with ZEITLUPE to Control Arabidopsis Clock Progression.
A. Baudry, S. Ito, Y. H. Song, A. A. Strait, T. Kiba, S. Lu, R. Henriques, J. L. Pruneda-Paz, N. H. Chua, E. M. Tobin, et al. (2010)
PLANT CELL 22, 606-622
   Abstract »    Full Text »    PDF »
At the end of the day: a common molecular mechanism for photoperiod responses in plants?.
U. Lagercrantz (2009)
J. Exp. Bot. 60, 2501-2515
   Abstract »    Full Text »    PDF »
Plant research accelerates along the (bio)informatics superhighway: Symposium on Plant Sensing, Response and Adaptation to the Environment.
J. M. Jimenez-Gomez and J. N. Maloof (2009)
EMBO Rep. 10, 568-572
   Full Text »    PDF »
The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals.
A. Greenup, W. J. Peacock, E. S. Dennis, and B. Trevaskis (2009)
Ann. Bot. 103, 1165-1172
   Abstract »    Full Text »    PDF »
A Genetic Study of the Arabidopsis Circadian Clock with Reference to the TIMING OF CAB EXPRESSION 1 (TOC1) Gene.
S. Ito, H. Kawamura, Y. Niwa, N. Nakamichi, T. Yamashino, and T. Mizuno (2009)
Plant Cell Physiol. 50, 290-303
   Abstract »    Full Text »    PDF »
Alterations in the Endogenous Ascorbic Acid Content Affect Flowering Time in Arabidopsis.
S. O. Kotchoni, K. E. Larrimore, M. Mukherjee, C. F. Kempinski, and C. Barth (2009)
Plant Physiology 149, 803-815
   Abstract »    Full Text »    PDF »
SHORT HYPOCOTYL UNDER BLUE1 Associates with MINISEED3 and HAIKU2 Promoters in Vivo to Regulate Arabidopsis Seed Development.
Y. Zhou, X. Zhang, X. Kang, X. Zhao, X. Zhang, and M. Ni (2009)
PLANT CELL 21, 106-117
   Abstract »    Full Text »    PDF »
Suppression of Pleiotropic Effects of Functional CRYPTOCHROME Genes by TERMINAL FLOWER 1.
A. S. Buchovsky, B. Strasser, P. D. Cerdan, and J. J. Casal (2008)
Genetics 180, 1467-1474
   Abstract »    Full Text »    PDF »
Circadian Clock Proteins LHY and CCA1 Regulate SVP Protein Accumulation to Control Flowering in Arabidopsis.
S. Fujiwara, A. Oda, R. Yoshida, K. Niinuma, K. Miyata, Y. Tomozoe, T. Tajima, M. Nakagawa, K. Hayashi, G. Coupland, et al. (2008)
PLANT CELL 20, 2960-2971
   Abstract »    Full Text »    PDF »
Acceleration of Flowering during Shade Avoidance in Arabidopsis Alters the Balance between FLOWERING LOCUS C-Mediated Repression and Photoperiodic Induction of Flowering.
A. C. Wollenberg, B. Strasser, P. D. Cerdan, and R. M. Amasino (2008)
Plant Physiology 148, 1681-1694
   Abstract »    Full Text »    PDF »
Ehd2, a Rice Ortholog of the Maize INDETERMINATE1 Gene, Promotes Flowering by Up-Regulating Ehd1.
K. Matsubara, U. Yamanouchi, Z.-X. Wang, Y. Minobe, T. Izawa, and M. Yano (2008)
Plant Physiology 148, 1425-1435
   Abstract »    Full Text »    PDF »
Two New Clock Proteins, LWD1 and LWD2, Regulate Arabidopsis Photoperiodic Flowering.
J.-F. Wu, Y. Wang, and S.-H. Wu (2008)
Plant Physiology 148, 948-959
   Abstract »    Full Text »    PDF »
Flowering Newsletter bibliography for 2007.
Compiled by, F. Tooke, T. Chiurugwi, and N. Battey (2008)
J. Exp. Bot.
   Full Text »    PDF »
Disruption of the Arabidopsis Circadian Clock Is Responsible for Extensive Variation in the Cold-Responsive Transcriptome.
Z. Bieniawska, C. Espinoza, A. Schlereth, R. Sulpice, D. K. Hincha, and M. A. Hannah (2008)
Plant Physiology 147, 263-279
   Abstract »    Full Text »    PDF »
Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response.
S. Jang, V. Marchal, K. C. S. Panigrahi, S. Wenkel, W. Soppe, X.-W. Deng, F. Valverde, and G. Coupland (2008)
EMBO J. 27, 1277-1288
   Abstract »    Full Text »    PDF »
Effects of Blue Light Deficiency on Acclimation of Light Energy Partitioning in PSII and CO2 Assimilation Capacity to High Irradiance in Spinach Leaves.
R. Matsuda, K. Ohashi-Kaneko, K. Fujiwara, and K. Kurata (2008)
Plant Cell Physiol. 49, 664-670
   Abstract »    Full Text »    PDF »
Identification of Dynamin as an Interactor of Rice GIGANTEA by Tandem Affinity Purification (TAP).
M. Abe, M. Fujiwara, K.-i. Kurotani, S. Yokoi, and K. Shimamoto (2008)
Plant Cell Physiol. 49, 420-432
   Abstract »    Full Text »    PDF »
COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis.
L.-J. Liu, Y.-C. Zhang, Q.-H. Li, Y. Sang, J. Mao, H.-L. Lian, L. Wang, and H.-Q. Yang (2008)
PLANT CELL 20, 292-306
   Abstract »    Full Text »    PDF »
Insight into Missing Genetic Links Between Two Evening-Expressed Pseudo-Response Regulator Genes TOC1 and PRR5 in the Circadian Clock-Controlled Circuitry in Arabidopsis thaliana.
S. Ito, Y. Niwa, N. Nakamichi, H. Kawamura, T. Yamashino, and T. Mizuno (2008)
Plant Cell Physiol. 49, 201-213
   Abstract »    Full Text »    PDF »
In Vivo Phosphorylation Site Mapping and Functional Characterization of Arabidopsis Phototropin 1.
S. Sullivan, C. E. Thomson, D. J. Lamont, M. A. Jones, and J. M. Christie (2008)
Mol Plant 1, 178-194
   Abstract »    Full Text »    PDF »
PLANT SCIENCE: Standing on the Shoulders of GIGANTEA.
V. Rubio and X. W. Deng (2007)
Science 318, 206-207
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882