Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 318 (5848): 271-274

Copyright © 2007 by the American Association for the Advancement of Science

Target Protectors Reveal Dampening and Balancing of Nodal Agonist and Antagonist by miR-430

Wen-Yee Choi,1,2 Antonio J. Giraldez,1,3* Alexander F. Schier1*

Abstract: MicroRNAs (miRNAs) repress hundreds of target messenger RNAs (mRNAs), but the physiological roles of specific miRNA-mRNA interactions remain largely elusive. We report that zebrafish microRNA-430 (miR-430) dampens and balances the expression of the transforming growth factor–ß (TGF-ß) Nodal agonist squint and the TGF-ß Nodal antagonist lefty. To disrupt the interaction of specific miRNA-mRNA pairs, we developed target protector morpholinos complementary to miRNA binding sites in target mRNAs. Protection of squint or lefty mRNAs from miR-430 resulted in enhanced or reduced Nodal signaling, respectively. Simultaneous protection of squint and lefty or absence of miR-430 caused an imbalance and reduction in Nodal signaling. These findings establish an approach to analyze the in vivo roles of specific miRNA-mRNA pairs and reveal a requirement for miRNAs in dampening and balancing agonist/antagonist pairs.

1 Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
2 Developmental Genetics Program, New York University School of Medicine, New York, NY 10016, USA.
3 Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.

* To whom correspondence should be addressed. E-mail: schier{at}; antonio.giraldez{at}

miR126-5p repression of ALCAM and SetD5 in endothelial cells regulates leucocyte adhesion and transmigration.
L. Poissonnier, G. Villain, F. Soncin, and V. Mattot (2014)
Cardiovasc Res
   Abstract »    Full Text »    PDF »
miR-335 promotes mesendodermal lineage segregation and shapes a transcription factor gradient in the endoderm.
D. Yang, D. Lutter, I. Burtscher, L. Uetzmann, F. J. Theis, and H. Lickert (2014)
Development 141, 514-525
   Abstract »    Full Text »    PDF »
MicroRNA-132 Is Enriched in Developing Axons, Locally Regulates Rasa1 mRNA, and Promotes Axon Extension.
M. L. Hancock, N. Preitner, J. Quan, and J. G. Flanagan (2014)
J. Neurosci. 34, 66-78
   Abstract »    Full Text »    PDF »
Small RNA profiling of Xenopus embryos reveals novel miRNAs and a new class of small RNAs derived from intronic transposable elements.
J. L. Harding, S. Horswell, C. Heliot, J. Armisen, L. B. Zimmerman, N. M. Luscombe, E. A. Miska, and C. S. Hill (2014)
Genome Res. 24, 96-106
   Abstract »    Full Text »    PDF »
ceRNA Cross-Talk in Cancer: When ce-bling Rivalries Go Awry.
F. A. Karreth and P. P. Pandolfi (2013)
Cancer Discovery 3, 1113-1121
   Abstract »    Full Text »    PDF »
miR-21 represses Pdcd4 during cardiac valvulogenesis.
H. J. Kolpa, D. S. Peal, S. N. Lynch, A. C. Giokas, S. Ghatak, S. Misra, R. A. Norris, C. A. MacRae, R. R. Markwald, P. Ellinor, et al. (2013)
Development 140, 2172-2180
   Abstract »    Full Text »    PDF »
microRNA-145 in Barrett's oesophagus: regulating BMP4 signalling via GATA6.
J. W. P. M. van Baal, R. E. Verbeek, P. Bus, M. Fassan, R. F. Souza, M. Rugge, F. J. W. ten Kate, F. P. Vleggaar, and P. D. Siersema (2013)
Gut 62, 664-675
   Abstract »    Full Text »    PDF »
Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments.
U. Ala, F. A. Karreth, C. Bosia, A. Pagnani, R. Taulli, V. Leopold, Y. Tay, P. Provero, R. Zecchina, and P. P. Pandolfi (2013)
PNAS 110, 7154-7159
   Abstract »    Full Text »    PDF »
MicroRNA-195 Protects Against Dementia Induced by Chronic Brain Hypoperfusion via Its Anti-Amyloidogenic Effect in Rats.
J. Ai, L.-H. Sun, H. Che, R. Zhang, T.-Z. Zhang, W.-C. Wu, X.-L. Su, X. Chen, G. Yang, K. Li, et al. (2013)
J. Neurosci. 33, 3989-4001
   Abstract »    Full Text »    PDF »
Precise SDF1-mediated cell guidance is achieved through ligand clearance and microRNA-mediated decay.
S. W. Lewellis, D. Nagelberg, A. Subedi, A. Staton, M. LeBlanc, A. Giraldez, and H. Knaut (2013)
J. Cell Biol. 200, 337-355
   Abstract »    Full Text »    PDF »
Potent microRNA suppression by RNA Pol II-transcribed 'Tough Decoy' inhibitors.
R. O. Bak, A. K. Hollensen, M. N. Primo, C. D. Sorensen, and J. G. Mikkelsen (2013)
RNA 19, 280-293
   Abstract »    Full Text »    PDF »
The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis.
G. Bridge, R. Monteiro, S. Henderson, V. Emuss, D. Lagos, D. Georgopoulou, R. Patient, and C. Boshoff (2012)
Blood 120, 5063-5072
   Abstract »    Full Text »    PDF »
miR-1 and miR-206 regulate angiogenesis by modulating VegfA expression in zebrafish.
C. Stahlhut, Y. Suarez, J. Lu, Y. Mishima, and A. J. Giraldez (2012)
Development 139, 4356-4365
   Abstract »    Full Text »    PDF »
Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis.
A. R. Colas, W. L. McKeithan, T. J. Cunningham, P. J. Bushway, L. X. Garmire, G. Duester, S. Subramaniam, and M. Mercola (2012)
Genes & Dev. 26, 2567-2579
   Abstract »    Full Text »    PDF »
Mutual antagonism between IP3RII and miRNA-133a regulates calcium signals and cardiac hypertrophy.
F. M. Drawnel, D. Wachten, J. D. Molkentin, M. Maillet, J. M. Aronsen, F. Swift, I. Sjaastad, N. Liu, D. Catalucci, K. Mikoshiba, et al. (2012)
J. Cell Biol. 199, 783-798
   Abstract »    Full Text »    PDF »
Extensive alternative polyadenylation during zebrafish development.
I. Ulitsky, A. Shkumatava, C. H. Jan, A. O. Subtelny, D. Koppstein, G. W. Bell, H. Sive, and D. P. Bartel (2012)
Genome Res. 22, 2054-2066
   Abstract »    Full Text »    PDF »
Celf1 regulation of dmrt2a is required for somite symmetry and left-right patterning during zebrafish development.
T. Matsui, A. Sasaki, N. Akazawa, H. Otani, and Y. Bessho (2012)
Development 139, 3553-3560
   Abstract »    Full Text »    PDF »
Dorsal activity of maternal squint is mediated by a non-coding function of the RNA.
S. Lim, P. Kumari, P. Gilligan, H. N. B. Quach, S. Mathavan, and K. Sampath (2012)
Development 139, 2903-2915
   Abstract »    Full Text »    PDF »
Overexpression of microRNA-1 impairs cardiac contractile function by damaging sarcomere assembly.
J. Ai, R. Zhang, X. Gao, H.-F. Niu, N. Wang, Y. Xu, Y. Li, N. Ma, L.-H. Sun, Z.-W. Pan, et al. (2012)
Cardiovasc Res 95, 385-393
   Abstract »    Full Text »    PDF »
MicroRNA-206 Regulates Cell Movements during Zebrafish Gastrulation by Targeting prickle1a and Regulating c-Jun N-Terminal Kinase 2 Phosphorylation.
X. Liu, G. Ning, A. Meng, and Q. Wang (2012)
Mol. Cell. Biol. 32, 2934-2942
   Abstract »    Full Text »    PDF »
Differential Diffusivity of Nodal and Lefty Underlies a Reaction-Diffusion Patterning System.
P. Muller, K. W. Rogers, B. M. Jordan, J. S. Lee, D. Robson, S. Ramanathan, and A. F. Schier (2012)
Science 336, 721-724
   Abstract »    Full Text »    PDF »
RNAimmuno: A database of the nonspecific immunological effects of RNA interference and microRNA reagents.
M. Olejniczak, P. Galka-Marciniak, K. Polak, A. Fligier, and W. J. Krzyzosiak (2012)
RNA 18, 930-935
   Abstract »    Full Text »    PDF »
Drosophila miR-124 regulates neuroblast proliferation through its target anachronism.
R. Weng and S. M. Cohen (2012)
Development 139, 1427-1434
   Abstract »    Full Text »    PDF »
MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review.
M. V. Iorio and C. M. Croce (2012)
EMBO Mol Med. 4, 143-159
   Abstract »    Full Text »    PDF »
The diversity of sex steroid action: the role of micro-RNAs and FOXO transcription factors in cycling endometrium and cancer.
E. W.-F. Lam, K. Shah, and J. J. Brosens (2012)
J. Endocrinol. 212, 13-25
   Abstract »    Full Text »    PDF »
Releasing a tiny molecular brake may improve memory.
R. Fiore and G. Schratt (2011)
EMBO J. 30, 4116-4118
   Abstract »    Full Text »    PDF »
Mir-290-295 deficiency in mice results in partially penetrant embryonic lethality and germ cell defects.
L. A. Medeiros, L. M. Dennis, M. E. Gill, H. Houbaviy, S. Markoulaki, D. Fu, A. C. White, O. Kirak, P. A. Sharp, D. C. Page, et al. (2011)
PNAS 108, 14163-14168
   Abstract »    Full Text »    PDF »
Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet {alpha}-granules.
J. Kamykowski, P. Carlton, S. Sehgal, and B. Storrie (2011)
Blood 118, 1370-1373
   Abstract »    Full Text »    PDF »
MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis.
K. Goljanek-Whysall, D. Sweetman, M. Abu-Elmagd, E. Chapnik, T. Dalmay, E. Hornstein, and A. Munsterberg (2011)
PNAS 108, 11936-11941
   Abstract »    Full Text »    PDF »
MicroRNAs in skin and wound healing.
J. Banerjee, Y. C. Chan, and C. K. Sen (2011)
Physiol Genomics 43, 543-556
   Abstract »    Full Text »    PDF »
Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs).
R. D. Mortensen, M. Serra, J. A. Steitz, and S. Vasudevan (2011)
PNAS 108, 8281-8286
   Abstract »    Full Text »    PDF »
The Nodal inhibitor Lefty is negatively modulated by the microRNA miR-302 in human embryonic stem cells.
A. Barroso-delJesus, G. Lucena-Aguilar, L. Sanchez, G. Ligero, I. Gutierrez-Aranda, and P. Menendez (2011)
FASEB J 25, 1497-1508
   Abstract »    Full Text »    PDF »
Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development.
N. Li, C. Wei, A. F. Olena, and J. G. Patton (2011)
Development 138, 1817-1826
   Abstract »    Full Text »    PDF »
Conservation defines functional motifs in the squint/nodal-related 1 RNA dorsal localization element.
P. C. Gilligan, P. Kumari, S. Lim, A. Cheong, A. Chang, and K. Sampath (2011)
Nucleic Acids Res. 39, 3340-3349
   Abstract »    Full Text »    PDF »
miR-204 is required for lens and retinal development via Meis2 targeting.
I. Conte, S. Carrella, R. Avellino, M. Karali, R. Marco-Ferreres, P. Bovolenta, and S. Banfi (2010)
PNAS 107, 15491-15496
   Abstract »    Full Text »    PDF »
The role of miRNAs and endogenous siRNAs in maternal-to-zygotic reprogramming and the establishment of pluripotency.
P. Svoboda and M. Flemr (2010)
EMBO Rep. 11, 590-597
   Abstract »    Full Text »    PDF »
Small RNA class transition from siRNA/piRNA to miRNA during pre-implantation mouse development.
Y. Ohnishi, Y. Totoki, A. Toyoda, T. Watanabe, Y. Yamamoto, K. Tokunaga, Y. Sakaki, H. Sasaki, and H. Hohjoh (2010)
Nucleic Acids Res. 38, 5141-5151
   Abstract »    Full Text »    PDF »
The miR-143-adducin3 pathway is essential for cardiac chamber morphogenesis.
D. C. Deacon, K. R. Nevis, T. J. Cashman, Y. Zhou, L. Zhao, D. Washko, B. Guner-Ataman, C. G. Burns, and C. E. Burns (2010)
Development 137, 1887-1896
   Abstract »    Full Text »    PDF »
Sequence-non-specific effects of RNA interference triggers and microRNA regulators.
M. Olejniczak, P. Galka, and W. J. Krzyzosiak (2010)
Nucleic Acids Res. 38, 1-16
   Abstract »    Full Text »    PDF »
A strategy to analyze the phenotypic consequences of inhibiting the association of an RNA-binding protein with a specific RNA.
M. Cibois, C. Gautier-Courteille, A. Vallee, and L. Paillard (2010)
RNA 16, 10-15
   Abstract »    Full Text »    PDF »
Deadenylation of maternal mRNAs mediated by miR-427 in Xenopus laevis embryos.
E. Lund, M. Liu, R. S. Hartley, M. D. Sheets, and J. E. Dahlberg (2009)
RNA 15, 2351-2363
   Abstract »    Full Text »    PDF »
The regulation of TGF{beta} signal transduction.
A. Moustakas and C.-H. Heldin (2009)
Development 136, 3699-3714
   Abstract »    Full Text »    PDF »
Nodal Morphogens.
A. F. Schier (2009)
Cold Spring Harb Perspect Biol 1, a003459
   Abstract »    Full Text »    PDF »
miR-145 directs intestinal maturation in zebrafish.
L. Zeng, A. D. Carter, and S. J. Childs (2009)
PNAS 106, 17793-17798
   Abstract »    Full Text »    PDF »
Development and Cancer: At the Crossroads of Nodal and Notch Signaling.
L. Strizzi, K. M. Hardy, E. A. Seftor, F. F. Costa, D. A. Kirschmann, R. E.B. Seftor, L.-M. Postovit, and M. J.C. Hendrix (2009)
Cancer Res. 69, 7131-7134
   Abstract »    Full Text »    PDF »
MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury.
M. Xin, E. M. Small, L. B. Sutherland, X. Qi, J. McAnally, C. F. Plato, J. A. Richardson, R. Bassel-Duby, and E. N. Olson (2009)
Genes & Dev. 23, 2166-2178
   Abstract »    Full Text »    PDF »
miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy.
Z. Lin, I. Murtaza, K. Wang, J. Jiao, J. Gao, and P.-F. Li (2009)
PNAS 106, 12103-12108
   Abstract »    Full Text »    PDF »
MicroRNAs and Their Role in Progressive Kidney Diseases.
M. Kato, L. Arce, and R. Natarajan (2009)
Clin. J. Am. Soc. Nephrol. 4, 1255-1266
   Abstract »    Full Text »    PDF »
Evolution under canalization and the dual roles of microRNAs--A hypothesis.
C.-I Wu, Y. Shen, and T. Tang (2009)
Genome Res. 19, 734-743
   Abstract »    Full Text »    PDF »
miR-451 regulates zebrafish erythroid maturation in vivo via its target gata2.
L. Pase, J. E. Layton, W. P. Kloosterman, D. Carradice, P. M. Waterhouse, and G. J. Lieschke (2009)
Blood 113, 1794-1804
   Abstract »    Full Text »    PDF »
Coherent but overlapping expression of microRNAs and their targets during vertebrate development.
A. Shkumatava, A. Stark, H. Sive, and D. P. Bartel (2009)
Genes & Dev. 23, 466-481
   Abstract »    Full Text »    PDF »
Evolutionarily Stable Association of Intronic snoRNAs and microRNAs with Their Host Genes.
M. P. Hoeppner, S. White, D. C. Jeffares, and A. M. Poole (2009)
Genome Biol Evol 1, 420-428
   Abstract »    Full Text »    PDF »
Origin and shaping of the laterality organ in zebrafish.
P. Oteiza, M. Koppen, M. L. Concha, and C.-P. Heisenberg (2008)
Development 135, 2807-2813
   Abstract »    Full Text »    PDF »
Dispatched Homolog 2 is targeted by miR-214 through a combination of three weak microRNA recognition sites.
N. Li, A. S. Flynt, H. R. Kim, L. Solnica-Krezel, and J. G. Patton (2008)
Nucleic Acids Res. 36, 4277-4285
   Abstract »    Full Text »    PDF »
Controlling morpholino experiments: don't stop making antisense.
J. S. Eisen and J. C. Smith (2008)
Development 135, 1735-1743
   Abstract »    Full Text »    PDF »
Micromanaging regeneration.
E. M. Tanaka and G. Weidinger (2008)
Genes & Dev. 22, 700-705
   Full Text »    PDF »
Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish.
V. P. Yin, J. M. Thomson, R. Thummel, D. R. Hyde, S. M. Hammond, and K. D. Poss (2008)
Genes & Dev. 22, 728-733
   Abstract »    Full Text »    PDF »
TGF{beta} superfamily signaling: notes from the desert.
R. W. Padgett and M. Reiss (2007)
Development 134, 3565-3569
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882