Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 318 (5848): 274-279

Copyright © 2007 by the American Association for the Advancement of Science

PKA Type II{alpha} Holoenzyme Reveals a Combinatorial Strategy for Isoform Diversity

Jian Wu,1 Simon H. J. Brown,1 Sventja von Daake,1 Susan S. Taylor1,2*

Abstract: The catalytic (C) subunit of cyclic adenosine monophosphate (cAMP)–dependent protein kinase (PKA) is inhibited by two classes of regulatory subunits, RI and RII. The RII subunits are substrates as well as inhibitors and do not require adenosine triphosphate (ATP) to form holoenzyme, which distinguishes them from RI subunits. To understand the molecular basis for isoform diversity, we solved the crystal structure of an RII{alpha} holoenzyme and compared it to the RI{alpha} holoenzyme. Unphosphorylated RII{alpha}(90-400), a deletion mutant, undergoes major conformational changes as both of the cAMP-binding domains wrap around the C subunit's large lobe. The hallmark of this conformational reorganization is the helix switch in domain A. The C subunit is in an open conformation, and its carboxyl-terminal tail is disordered. This structure demonstrates the conserved and isoform-specific features of RI and RII and the importance of ATP, and also provides a new paradigm for designing isoform-specific activators or antagonists for PKA.

1 Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
2 Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.

* To whom correspondence should be addressed. E-mail: staylor{at}ucsd.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Pain modulators regulate the dynamics of PKA-RII phosphorylation in subgroups of sensory neurons.
J. Isensee, M. Diskar, S. Waldherr, R. Buschow, J. Hasenauer, A. Prinz, F. Allgower, F. W. Herberg, and T. Hucho (2014)
J. Cell Sci. 127, 216-229
   Abstract »    Full Text »    PDF »
Local cAMP signaling in disease at a glance.
M. G. Gold, T. Gonen, and J. D. Scott (2013)
J. Cell Sci. 126, 4537-4543
   Abstract »    Full Text »    PDF »
Intrinsic disorder within an AKAP-protein kinase A complex guides local substrate phosphorylation.
F. D. Smith, S. L. Reichow, J. L. Esseltine, D. Shi, L. K. Langeberg, J. D. Scott, and T. Gonen (2013)
eLife Sci 2, e01319
   Abstract »    Full Text »    PDF »
Localization and quaternary structure of the PKA RI{beta} holoenzyme.
R. Ilouz, J. Bubis, J. Wu, Y. Y. Yim, M. S. Deal, A. P. Kornev, Y. Ma, D. K. Blumenthal, and S. S. Taylor (2012)
PNAS 109, 12443-12448
   Abstract »    Full Text »    PDF »
Structure and Allostery of the PKA RII{beta} Tetrameric Holoenzyme.
P. Zhang, E. V. Smith-Nguyen, M. M. Keshwani, M. S. Deal, A. P. Kornev, and S. S. Taylor (2012)
Science 335, 712-716
   Abstract »    Full Text »    PDF »
Regulation of cAMP-dependent Protein Kinases: THE HUMAN PROTEIN KINASE X (PrKX) REVEALS THE ROLE OF THE CATALYTIC SUBUNIT {alpha}H-{alpha}I LOOP.
M. Diskar, H.-M. Zenn, A. Kaupisch, M. Kaufholz, S. Brockmeyer, D. Sohmen, M. Berrera, M. Zaccolo, M. Boshart, F. W. Herberg, et al. (2010)
J. Biol. Chem. 285, 35910-35918
   Abstract »    Full Text »    PDF »
Characterization of Substrates That Have a Differential Effect on Saccharomyces cerevisiae Protein Kinase A Holoenzyme Activation.
F. Galello, P. Portela, S. Moreno, and S. Rossi (2010)
J. Biol. Chem. 285, 29770-29779
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase 3{beta} Interaction Protein Functions as an A-kinase Anchoring Protein.
C. Hundsrucker, P. Skroblin, F. Christian, H.-M. Zenn, V. Popara, M. Joshi, J. Eichhorst, B. Wiesner, F. W. Herberg, B. Reif, et al. (2010)
J. Biol. Chem. 285, 5507-5521
   Abstract »    Full Text »    PDF »
Mechanism of Epac Activation: STRUCTURAL AND FUNCTIONAL ANALYSES OF Epac2 HINGE MUTANTS WITH CONSTITUTIVE AND REDUCED ACTIVITIES.
T. Tsalkova, D. K. Blumenthal, F. C. Mei, M. A. White, and X. Cheng (2009)
J. Biol. Chem. 284, 23644-23651
   Abstract »    Full Text »    PDF »
Mode of Action of cGMP-dependent Protein Kinase-specific Inhibitors Probed by Photoaffinity Cross-linking Mass Spectrometry.
M. W. H. Pinkse, D. T. S. Rijkers, W. R. Dostmann, and A. J. R. Heck (2009)
J. Biol. Chem. 284, 16354-16368
   Abstract »    Full Text »    PDF »
Distal Recognition Sites in Substrates Are Required for Efficient Phosphorylation by the cAMP-Dependent Protein Kinase.
S. J. Deminoff, V. Ramachandran, and P. K. Herman (2009)
Genetics 182, 529-539
   Abstract »    Full Text »    PDF »
Contribution of Non-catalytic Core Residues to Activity and Regulation in Protein Kinase A.
J. Yang, E. J. Kennedy, J. Wu, M. S. Deal, J. Pennypacker, G. Ghosh, and S. S. Taylor (2009)
J. Biol. Chem. 284, 6241-6248
   Abstract »    Full Text »    PDF »
Protein Kinase A Type I and Type II Define Distinct Intracellular Signaling Compartments.
G. Di Benedetto, A. Zoccarato, V. Lissandron, A. Terrin, X. Li, M. D. Houslay, G. S. Baillie, and M. Zaccolo (2008)
Circ. Res. 103, 836-844
   Abstract »    Full Text »    PDF »
A helix scaffold for the assembly of active protein kinases.
A. P. Kornev, S. S. Taylor, and L. F. Ten Eyck (2008)
PNAS 105, 14377-14382
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882