Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 318 (5851): 772-777

Copyright © 2007 by the American Association for the Advancement of Science

Molecular Basis for the Nerve Dependence of Limb Regeneration in an Adult Vertebrate

Anoop Kumar,1* James W. Godwin,1* Phillip B. Gates,1 A. Acely Garza-Garcia,2 Jeremy P. Brockes1{dagger}

Abstract: The limb blastemal cells of an adult salamander regenerate the structures distal to the level of amputation, and the surface protein Prod 1 is a critical determinant of their proximodistal identity. The anterior gradient protein family member nAG is a secreted ligand for Prod 1 and a growth factor for cultured newt blastemal cells. nAG is sequentially expressed after amputation in the regenerating nerve and the wound epidermis—the key tissues of the stem cell niche—and its expression in both locations is abrogated by denervation. The local expression of nAG after electroporation is sufficient to rescue a denervated blastema and regenerate the distal structures. Our analysis brings together the positional identity of the blastema and the classical nerve dependence of limb regeneration.

1 Department of Biochemistry and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
2 Division of Molecular Structure, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: j.brockes{at}ucl.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate.
M. B. Tereshina, G. V. Ermakova, A. S. Ivanova, and A. G. Zaraisky (2014)
Biology Open 3, 192-203
   Abstract »    Full Text »    PDF »
Limb regeneration in salamanders and digital tip regeneration in experimental mice: Implications for the hand surgeon.
M. M. Al-Qattan, A. M. Al-Qattan, D. A. Al-Maged Ahmed, M. M. Abd Al-Wahed, and M. K. Shier (2014)
J Hand Surg Eur Vol.
   Abstract »    Full Text »    PDF »
Transcriptional components of anteroposterior positional information during zebrafish fin regeneration.
G. Nachtrab, K. Kikuchi, V. A. Tornini, and K. D. Poss (2013)
Development 140, 3754-3764
   Abstract »    Full Text »    PDF »
Pseudotyped retroviruses for infecting axolotl in vivo and in vitro.
J. L. Whited, S. L. Tsai, K. T. Beier, J. N. White, N. Piekarski, J. Hanken, C. L. Cepko, and C. J. Tabin (2013)
Development 140, 1137-1146
   Abstract »    Full Text »    PDF »
Loss of Anterior Gradient 2 (Agr2) Expression Results in Hyperplasia and Defective Lineage Maturation in the Murine Stomach.
A. Gupta, D. Wodziak, M. Tun, D. M. Bouley, and A. W. Lowe (2013)
J. Biol. Chem. 288, 4321-4333
   Abstract »    Full Text »    PDF »
Gene expression patterns specific to the regenerating limb of the Mexican axolotl.
J. R. Monaghan, A. Athippozhy, A. W. Seifert, S. Putta, A. J. Stromberg, M. Maden, D. M. Gardiner, and S. R. Voss (2012)
Biology Open 1, 937-948
   Abstract »    Full Text »    PDF »
A new zebrafish bone crush injury model.
S. Sousa, F. Valerio, and A. Jacinto (2012)
Biology Open 1, 915-921
   Abstract »    Full Text »    PDF »
Inducible genetic system for the axolotl.
J. L. Whited, J. A. Lehoczky, and C. J. Tabin (2012)
PNAS 109, 13662-13667
   Abstract »    Full Text »    PDF »
Diversity in Genetic In Vivo Methods for Protein-Protein Interaction Studies: from the Yeast Two-Hybrid System to the Mammalian Split-Luciferase System.
B. Stynen, H. Tournu, J. Tavernier, and P. Van Dijck (2012)
Microbiol. Mol. Biol. Rev. 76, 331-382
   Abstract »    Full Text »    PDF »
Beyond the cell: The cell biology of regeneration.
R. S. King and P. A. Newmark (2012)
J. Cell Biol. 196, 553-562
   Abstract »    Full Text »    PDF »
AGR2 Gene Function Requires a Unique Endoplasmic Reticulum Localization Motif.
A. Gupta, A. Dong, and A. W. Lowe (2012)
J. Biol. Chem. 287, 4773-4782
   Abstract »    Full Text »    PDF »
The aneurogenic limb identifies developmental cell interactions underlying vertebrate limb regeneration.
A. Kumar, J.-P. Delgado, P. B. Gates, G. Neville, A. Forge, and J. P. Brockes (2011)
PNAS 108, 13588-13593
   Abstract »    Full Text »    PDF »
The Human Adenocarcinoma-associated Gene, AGR2, Induces Expression of Amphiregulin through Hippo Pathway Co-activator YAP1 Activation.
A. Dong, A. Gupta, R. K. Pai, M. Tun, and A. W. Lowe (2011)
J. Biol. Chem. 286, 18301-18310
   Abstract »    Full Text »    PDF »
Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration.
R. A. Blassberg, A. Garza-Garcia, A. Janmohamed, P. B. Gates, and J. P. Brockes (2011)
J. Cell Sci. 124, 47-56
   Abstract »    Full Text »    PDF »
Evidence for the Local Evolution of Mechanisms Underlying Limb Regeneration in Salamanders.
A. A. Garza-Garcia, P. C. Driscoll, and J. P. Brockes (2010)
Integr. Comp. Biol. 50, 528-535
   Abstract »    Full Text »    PDF »
Branching Takes Nerve.
J. R. Rock and B. L. M. Hogan (2010)
Science 329, 1610-1611
   Abstract »    Full Text »    PDF »
Advanced Identification of Proteins in Uncharacterized Proteomes by Pulsed in Vivo Stable Isotope Labeling-based Mass Spectrometry.
M. Looso, T. Borchardt, M. Kruger, and T. Braun (2010)
Mol. Cell. Proteomics 9, 1157-1166
   Abstract »    Full Text »    PDF »
Epimorphic regeneration approach to tissue replacement in adult mammals.
V. Agrawal, S. A. Johnson, J. Reing, L. Zhang, S. Tottey, G. Wang, K. K. Hirschi, S. Braunhut, L. J. Gudas, and S. F. Badylak (2010)
PNAS 107, 3351-3355
   Abstract »    Full Text »    PDF »
Preparation and Culture of Limb Blastema Stem Cells from Regenerating Larval and Adult Salamanders.
A. Kumar and J. W. Godwin (2010)
Cold Spring Harb Protoc 2010, pdb.prot5367
   Abstract »    Full Text »    PDF »
A wound-induced Wnt expression program controls planarian regeneration polarity.
C. P. Petersen and P. W. Reddien (2009)
PNAS 106, 17061-17066
   Abstract »    Full Text »    PDF »
The Role of Stromal Stem Cells in Tissue Regeneration and Wound Repair.
T. S. Stappenbeck and H. Miyoshi (2009)
Science 324, 1666-1669
   Abstract »    Full Text »    PDF »
Triggering the regeneration and tissue repair programs.
E. Tanaka and B. Galliot (2009)
Development 136, 349-353
   Abstract »    Full Text »    PDF »
Novel Insights into the Flexibility of Cell and Positional Identity during Urodele Limb Regeneration.
M. Kragl, D. Knapp, E. Nacu, S. Khattak, E. Schnapp, H.-H. Epperlein, and E.M. Tanaka (2008)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Tail Regeneration in Xenopus laevis as a Model for Understanding Tissue Repair.
A.-S. Tseng and M. Levin (2008)
Journal of Dental Research 87, 806-816
   Abstract »    Full Text »    PDF »
DEVELOPMENTAL BIOLOGY: Acceptable nAGging.
D. L. Stocum (2007)
Science 318, 754-755
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882