Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 318 (5851): 809-812

Copyright © 2007 by the American Association for the Advancement of Science

Ordered Phosphorylation Governs Oscillation of a Three-Protein Circadian Clock

Michael J. Rust,1* Joseph S. Markson,1,2* William S. Lane,3 Daniel S. Fisher,4 Erin K. O'Shea1{dagger}

Abstract: The simple circadian oscillator found in cyanobacteria can be reconstituted in vitro using three proteins—KaiA, KaiB, and KaiC. The total phosphorylation level of KaiC oscillates with a circadian period, but the mechanism underlying its sustained oscillation remains unclear. We have shown that four forms of KaiC differing in their phosphorylation state appear in an ordered pattern arising from the intrinsic autokinase and autophosphatase rates of KaiC and their modulation by KaiA. Kinetic and biochemical data indicate that one of these phosphoforms inhibits the activity of KaiA through interaction with KaiB, providing the crucial feedback that sustains oscillation. A mathematical model constrained by experimental data quantitatively reproduces the circadian period and the distinctive dynamics of the four phosphoforms.

1 Howard Hughes Medical Institute, Faculty of Arts and Sciences Center for Systems Biology, Departments of Molecular and Cellular Biology and of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
2 Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
3 Microchemistry and Proteomics Analysis Facility, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA.
4 Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: erin_oshea{at}harvard.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
A sequestration feedback determines dynamics and temperature entrainment of the KaiABC circadian clock.
C. Brettschneider, R. J. Rose, S. Hertel, I. M. Axmann, A. J. R. Heck, and M. Kollmann (2014)
Mol Syst Biol 6, 389
   Abstract »    Full Text »    PDF »
A mechanism for robust circadian timekeeping via stoichiometric balance.
J. K. Kim and D. B. Forger (2014)
Mol Syst Biol 8, 630
   Abstract »    Full Text »    PDF »
Exchange of ADP with ATP in the CII ATPase domain promotes autophosphorylation of cyanobacterial clock protein KaiC.
T. Nishiwaki-Ohkawa, Y. Kitayama, E. Ochiai, and T. Kondo (2014)
PNAS 111, 4455-4460
   Abstract »    Full Text »    PDF »
Insight into cyanobacterial circadian timing from structural details of the KaiB-KaiC interaction.
J. Snijder, R. J. Burnley, A. Wiegard, A. S. J. Melquiond, A. M. J. J. Bonvin, I. M. Axmann, and A. J. R. Heck (2014)
PNAS 111, 1379-1384
   Abstract »    Full Text »    PDF »
Active output state of the Synechococcus Kai circadian oscillator.
M. L. Paddock, J. S. Boyd, D. M. Adin, and S. S. Golden (2013)
PNAS 110, E3849-E3857
   Abstract »    Full Text »    PDF »
Nuclear Magnetic Resonance Spectroscopy of the Circadian Clock of Cyanobacteria.
Y.-G. Chang, R. Tseng, N.-W. Kuo, and A. LiWang (2013)
Integr. Comp. Biol. 53, 93-102
   Abstract »    Full Text »    PDF »
Robust Circadian Oscillations in Growing Cyanobacteria Require Transcriptional Feedback.
S.-W. Teng, S. Mukherji, J. R. Moffitt, S. de Buyl, and E. K. O'Shea (2013)
Science 340, 737-740
   Abstract »    Full Text »    PDF »
Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence.
A. Wiegard, A. K. Dorrich, H.-T. Deinzer, C. Beck, A. Wilde, J. Holtzendorff, and I. M. Axmann (2013)
Microbiology 159, 948-958
   Abstract »    Full Text »    PDF »
Robust and tunable circadian rhythms from differentially sensitive catalytic domains.
C. Phong, J. S. Markson, C. M. Wilhoite, and M. J. Rust (2013)
PNAS 110, 1124-1129
   Abstract »    Full Text »    PDF »
Rhythmic ring-ring stacking drives the circadian oscillator clockwise.
Y.-G. Chang, R. Tseng, N.-W. Kuo, and A. LiWang (2012)
PNAS 109, 16847-16851
   Abstract »    Full Text »    PDF »
Orderly wheels of the cyanobacterial clock.
M. J. Rust (2012)
PNAS 109, 16760-16761
   Full Text »    PDF »
Perturbation-based analysis and modeling of combinatorial regulation in the yeast sulfur assimilation pathway.
R. S. McIsaac, A. A. Petti, H. J. Bussemaker, and D. Botstein (2012)
Mol. Biol. Cell 23, 2993-3007
   Abstract »    Full Text »    PDF »
Circadian Autodephosphorylation of Cyanobacterial Clock Protein KaiC Occurs via Formation of ATP as Intermediate.
T. Nishiwaki and T. Kondo (2012)
J. Biol. Chem. 287, 18030-18035
   Abstract »    Full Text »    PDF »
Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration.
T. S. Hatakeyama and K. Kaneko (2012)
PNAS 109, 8109-8114
   Abstract »    Full Text »    PDF »
Modelling cyanobacteria: from metabolism to integrative models of phototrophic growth.
R. Steuer, H. Knoop, and R. Machne (2012)
J. Exp. Bot. 63, 2259-2274
   Abstract »    Full Text »    PDF »
Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria.
Y.-G. Chang, N.-W. Kuo, R. Tseng, and A. LiWang (2011)
PNAS 108, 14431-14436
   Abstract »    Full Text »    PDF »
Light-Driven Changes in Energy Metabolism Directly Entrain the Cyanobacterial Circadian Oscillator.
M. J. Rust, S. S. Golden, and E. K. O'Shea (2011)
Science 331, 220-223
   Abstract »    Full Text »    PDF »
Tracking and visualizing the circadian ticking of the cyanobacterial clock protein KaiC in solution.
Y. Murayama, A. Mukaiyama, K. Imai, Y. Onoue, A. Tsunoda, A. Nohara, T. Ishida, Y. Maeda, K. Terauchi, T. Kondo, et al. (2011)
EMBO J. 30, 68-78
   Abstract »    Full Text »    PDF »
Robust circadian clocks from coupled protein-modification and transcription-translation cycles.
D. Zwicker, D. K. Lubensky, and P. R. ten Wolde (2010)
PNAS 107, 22540-22545
   Abstract »    Full Text »    PDF »
Intermolecular associations determine the dynamics of the circadian KaiABC oscillator.
X. Qin, M. Byrne, T. Mori, P. Zou, D. R. Williams, H. Mchaourab, and C. H. Johnson (2010)
PNAS 107, 14805-14810
   Abstract »    Full Text »    PDF »
The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor.
T. L. Wood, J. Bridwell-Rabb, Y.-I. Kim, T. Gao, Y.-G. Chang, A. LiWang, D. P. Barondeau, and S. S. Golden (2010)
PNAS 107, 5804-5809
   Abstract »    Full Text »    PDF »
Biochemical Evidence for a Timing Mechanism in Prochlorococcus.
I. M. Axmann, U. Duhring, L. Seeliger, A. Arnold, J. T. Vanselow, A. Kramer, and A. Wilde (2009)
J. Bacteriol. 191, 5342-5347
   Abstract »    Full Text »    PDF »
Metabolic Rhythms of the Cyanobacterium Cyanothece sp. ATCC 51142 Correlate with Modeled Dynamics of Circadian Clock.
J. Cerveny and L. Nedbal (2009)
J Biol Rhythms 24, 295-303
   Abstract »    PDF »
A Novel Allele of kaiA Shortens the Circadian Period and Strengthens Interaction of Oscillator Components in the Cyanobacterium Synechococcus elongatus PCC 7942.
Y. Chen, Y.-I. Kim, S. R. Mackey, C. K. Holtman, A. LiWang, and S. S. Golden (2009)
J. Bacteriol. 191, 4392-4400
   Abstract »    Full Text »    PDF »
Neurotransmitter-Mediated Collective Rhythms in Grouped Drosophila Circadian Clocks.
Junwei Wang, Jiajun Zhang, Zhanjiang Yuan, Aimin Chen, and Tianshou Zhou (2008)
J Biol Rhythms 23, 472-482
   Abstract »    PDF »
Structural Insights into a Circadian Oscillator.
C. H. Johnson, M. Egli, and P. L. Stewart (2008)
Science 322, 697-701
   Abstract »    Full Text »    PDF »
A genetic timer through noise-induced stabilization of an unstable state.
M. Turcotte, J. Garcia-Ojalvo, and G. M. Suel (2008)
PNAS 105, 15732-15737
   Abstract »    Full Text »    PDF »
Dual Modification of BMAL1 by SUMO2/3 and Ubiquitin Promotes Circadian Activation of the CLOCK/BMAL1 Complex.
J. Lee, Y. Lee, M. J. Lee, E. Park, S. H. Kang, C. H. Chung, K. H. Lee, and K. Kim (2008)
Mol. Cell. Biol. 28, 6056-6065
   Abstract »    Full Text »    PDF »
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria.
Y.-I. Kim, G. Dong, C. W. Carruthers Jr, S. S. Golden, and A. LiWang (2008)
PNAS 105, 12825-12830
   Abstract »    Full Text »    PDF »
Potential landscape and flux framework of nonequilibrium networks: Robustness, dissipation, and coherence of biochemical oscillations.
J. Wang, L. Xu, and E. Wang (2008)
PNAS 105, 12271-12276
   Abstract »    Full Text »    PDF »
Rapid Cycling and Precocious Termination of G1 Phase in Cells Expressing CDK1AF.
J. R. Pomerening, J. A. Ubersax, and J. E. Ferrell Jr. (2008)
Mol. Biol. Cell 19, 3426-3441
   Abstract »    Full Text »    PDF »
Robust, Tunable Biological Oscillations from Interlinked Positive and Negative Feedback Loops.
T. Y.-C. Tsai, Y. S. Choi, W. Ma, J. R. Pomerening, C. Tang, and J. E. Ferrell Jr. (2008)
Science 321, 126-129
   Abstract »    Full Text »    PDF »
Genome Streamlining Results in Loss of Robustness of the Circadian Clock in the Marine Cyanobacterium Prochlorococcus marinus PCC 9511.
J. Holtzendorff, F. Partensky, D. Mella, J.-F. Lennon, W. R. Hess, and L. Garczarek (2008)
J Biol Rhythms 23, 187-199
   Abstract »    PDF »
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
Y. Kitayama, T. Nishiwaki, K. Terauchi, and T. Kondo (2008)
Genes & Dev. 22, 1513-1521
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clock Gene Expression by Phosphorylation States of KaiC in Cyanobacteria.
Y. Murayama, T. Oyama, and T. Kondo (2008)
J. Bacteriol. 190, 1691-1698
   Abstract »    Full Text »    PDF »
2007: Signaling Breakthroughs of the Year.
E. M. Adler, J. F. Foley, N. R. Gough, and L. B. Ray (2008)
Science Signaling 1, eg1
   Abstract »    Full Text »    PDF »
SYSTEMS BIOLOGY: A Clock with a Flip Switch.
A. C. Poon and J. E. Ferrell Jr. (2007)
Science 318, 757-758
   Abstract »    Full Text »    PDF »
Transcriptional Feedback and Definition of the Circadian Pacemaker in Drosophila and Animals.
M. Rosbash, S. Bradley, S. Kadener, Y. Li, W. Luo, J. S. Menet, E. Nagoshi, K. Palm, R. Schoer, Y. Shang, et al. (2007)
Cold Spring Harb Symp Quant Biol 72, 75-83
   Abstract »    PDF »
Circadian Clocks: 50 Years On.
M. Menaker (2007)
Cold Spring Harb Symp Quant Biol 72, 655-659
   Abstract »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882