Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 318 (5856): 1608-1612

Copyright © 2007 by the American Association for the Advancement of Science

Structure of a Site-2 Protease Family Intramembrane Metalloprotease

Liang Feng,1* Hanchi Yan,1* Zhuoru Wu,1* Nieng Yan,1 Zhe Wang,2 Philip D. Jeffrey,1 Yigong Shi1{dagger}

Abstract: Regulated intramembrane proteolysis by members of the site-2 protease (S2P) family is an important signaling mechanism conserved from bacteria to humans. Here we report the crystal structure of the transmembrane core domain of an S2P metalloprotease from Methanocaldococcus jannaschii. The protease consists of six transmembrane segments, with the catalytic zinc atom coordinated by two histidine residues and one aspartate residue ~14 angstroms into the lipid membrane surface. The protease exhibits two distinct conformations in the crystals. In the closed conformation, the active site is surrounded by transmembrane helices and is impermeable to substrate peptide; water molecules gain access to zinc through a polar, central channel that opens to the cytosolic side. In the open conformation, transmembrane helices {alpha}1 and {alpha}6 separate from each other by 10 to 12 angstroms, exposing the active site to substrate entry. The structure reveals how zinc embedded in an integral membrane protein can catalyze peptide cleavage.

1 Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08544, USA.
2 Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: ygshi{at}

N. Matsumura, M. Takami, M. Okochi, S. Wada-Kakuda, H. Fujiwara, S. Tagami, S. Funamoto, Y. Ihara, and M. Morishima-Kawashima (2014)
J. Biol. Chem. 289, 5109-5121
   Abstract »    Full Text »    PDF »
Site-2 protease substrate specificity and coupling in trans by a PDZ-substrate adapter protein.
J. S. Schneider, S. P. Reddy, H. Y. E, H. W. Evans, and M. S. Glickman (2013)
PNAS 110, 19543-19548
   Abstract »    Full Text »    PDF »
Residues in Conserved Loops of Intramembrane Metalloprotease SpoIVFB Interact with Residues near the Cleavage Site in Pro-{sigma}K.
Y. Zhang, P. M. Luethy, R. Zhou, and L. Kroos (2013)
J. Bacteriol. 195, 4936-4946
   Abstract »    Full Text »    PDF »
A Novel Family of Soluble Minimal Scaffolds Provides Structural Insight into the Catalytic Domains of Integral Membrane Metallopeptidases.
M. Lopez-Pelegrin, N. Cerda-Costa, F. Martinez-Jimenez, A. Cintas-Pedrola, A. Canals, J. R. Peinado, M. A. Marti-Renom, C. Lopez-Otin, J. L. Arolas, and F. X. Gomis-Ruth (2013)
J. Biol. Chem. 288, 21279-21294
   Abstract »    Full Text »    PDF »
The Activity of {sigma}V, an Extracytoplasmic Function {sigma} Factor of Bacillus subtilis, Is Controlled by Regulated Proteolysis of the Anti-{sigma} Factor RsiV.
J. L. Hastie, K. B. Williams, and C. D. Ellermeier (2013)
J. Bacteriol. 195, 3135-3144
   Abstract »    Full Text »    PDF »
Features of Pro-{sigma}K Important for Cleavage by SpoIVFB, an Intramembrane Metalloprotease.
R. Zhou, K. Chen, X. Xiang, L. Gu, and L. Kroos (2013)
J. Bacteriol. 195, 2793-2806
   Abstract »    Full Text »    PDF »
Structure of the Integral Membrane Protein CAAX Protease Ste24p.
E. E. Pryor Jr., P. S. Horanyi, K. M. Clark, N. Fedoriw, S. M. Connelly, M. Koszelak-Rosenblum, G. Zhu, M. G. Malkowski, M. C. Wiener, and M. E. Dumont (2013)
Science 339, 1600-1604
   Abstract »    Full Text »    PDF »
Identification and Characterization of Five Intramembrane Metalloproteases in Anabaena variabilis.
K. Chen, L. Gu, X. Xiang, M. Lynch, and R. Zhou (2012)
J. Bacteriol. 194, 6105-6115
   Abstract »    Full Text »    PDF »
Membrane Proteases in the Bacterial Protein Secretion and Quality Control Pathway.
R. E. Dalbey, P. Wang, and J. M. van Dijl (2012)
Microbiol. Mol. Biol. Rev. 76, 311-330
   Abstract »    Full Text »    PDF »
Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria.
A. Saito, Y. Hizukuri, E.-i. Matsuo, S. Chiba, H. Mori, O. Nishimura, K. Ito, and Y. Akiyama (2011)
PNAS 108, 13740-13745
   Abstract »    Full Text »    PDF »
Regulation of Cholesterol and Fatty Acid Synthesis.
J. Ye and R. A. DeBose-Boyd (2011)
Cold Spring Harb Perspect Biol 3, a004754
   Abstract »    Full Text »    PDF »
Structure of {gamma}-Secretase and Its Trimeric Pre-activation Intermediate by Single-particle Electron Microscopy.
F. Renzi, X. Zhang, W. J. Rice, C. Torres-Arancivia, Y. Gomez-Llorente, R. Diaz, K. Ahn, C. Yu, Y.-M. Li, S. S. Sisodia, et al. (2011)
J. Biol. Chem. 286, 21440-21449
   Abstract »    Full Text »    PDF »
Nelfinavir Induces Liposarcoma Apoptosis through Inhibition of Regulated Intramembrane Proteolysis of SREBP-1 and ATF6.
M. Guan, K. Fousek, C. Jiang, S. Guo, T. Synold, B. Xi, C.-C. Shih, and W. A. Chow (2011)
Clin. Cancer Res. 17, 1796-1806
   Abstract »    Full Text »    PDF »
The FtsH Protease Heterocomplex in Arabidopsis: Dispensability of Type-B Protease Activity for Proper Chloroplast Development.
D. Zhang, Y. Kato, L. Zhang, M. Fujimoto, N. Tsutsumi, Sodmergen, and W. Sakamoto (2010)
PLANT CELL 22, 3710-3725
   Abstract »    Full Text »    PDF »
DivIC Stabilizes FtsL against RasP Cleavage.
I. Wadenpohl and M. Bramkamp (2010)
J. Bacteriol. 192, 5260-5263
   Abstract »    Full Text »    PDF »
Structural investigation of the C-terminal catalytic fragment of presenilin 1.
S. Sobhanifar, B. Schneider, F. Lohr, D. Gottstein, T. Ikeya, K. Mlynarczyk, W. Pulawski, U. Ghoshdastider, M. Kolinski, S. Filipek, et al. (2010)
PNAS 107, 9644-9649
   Abstract »    Full Text »    PDF »
bZIP28 and NF-Y Transcription Factors Are Activated by ER Stress and Assemble into a Transcriptional Complex to Regulate Stress Response Genes in Arabidopsis.
J. X. Liu and S. H. Howell (2010)
PLANT CELL 22, 782-796
   Abstract »    Full Text »    PDF »
Glu-333 of Nicastrin Directly Participates in {gamma}-Secretase Activity.
D. R. Dries, S. Shah, Y.-H. Han, C. Yu, S. Yu, M. S. Shearman, and G. Yu (2009)
J. Biol. Chem. 284, 29714-29724
   Abstract »    Full Text »    PDF »
Intramembrane proteolytic cleavage of a membrane-tethered transcription factor by a metalloprotease depends on ATP.
R. Zhou, C. Cusumano, D. Sui, R. M. Garavito, and L. Kroos (2009)
PNAS 106, 16174-16179
   Abstract »    Full Text »    PDF »
Ligand Binding in the Conserved Interhelical Loop of CorA, a Magnesium Transporter from Mycobacterium tuberculosis.
J. Hu, M. Sharma, H. Qin, F. P. Gao, and T. A. Cross (2009)
J. Biol. Chem. 284, 15619-15628
   Abstract »    Full Text »    PDF »
Intramembrane-cleaving Proteases.
M. S. Wolfe (2009)
J. Biol. Chem. 284, 13969-13973
   Full Text »    PDF »
Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL.
M. S. Brown and J. L. Goldstein (2009)
J. Lipid Res. 50, S15-S27
   Abstract »    Full Text »    PDF »
A helix-to-coil transition at the {varepsilon}-cut site in the transmembrane dimer of the amyloid precursor protein is required for proteolysis.
T. Sato, T.-c. Tang, G. Reubins, J. Z. Fei, T. Fujimoto, P. Kienlen-Campard, S. N. Constantinescu, J.-N. Octave, S. Aimoto, and S. O. Smith (2009)
PNAS 106, 1421-1426
   Abstract »    Full Text »    PDF »
Quantitative Proteomic Analysis of Bean Plants Infected by a Virulent and Avirulent Obligate Rust Fungus.
J. Lee, J. Feng, K. B. Campbell, B. E. Scheffler, W. M. Garrett, S. Thibivilliers, G. Stacey, D. Q. Naiman, M. L. Tucker, M. A. Pastor-Corrales, et al. (2009)
Mol. Cell. Proteomics 8, 19-31
   Abstract »    Full Text »    PDF »
Alternative Processing of Sterol Regulatory Element Binding Protein During Larval Development in Drosophila melanogaster.
K. A. Matthews, A. S. Kunte, E. Tambe-Ebot, and R. B. Rawson (2009)
Genetics 181, 119-128
   Abstract »    Full Text »    PDF »
A Pair of Circularly Permutated PDZ Domains Control RseP, the S2P Family Intramembrane Protease of Escherichia coli.
K. Inaba, M. Suzuki, K.-i. Maegawa, S. Akiyama, K. Ito, and Y. Akiyama (2008)
J. Biol. Chem. 283, 35042-35052
   Abstract »    Full Text »    PDF »
Presenilins: Members of the {gamma}-Secretase Quartets, But Part-Time Soloists Too.
T. Wakabayashi and B. De Strooper (2008)
Physiology 23, 194-204
   Abstract »    Full Text »    PDF »
Enzymes Without Borders: Mobilizing Substrates, Delivering Products.
F. Forneris and A. Mattevi (2008)
Science 321, 213-216
   Abstract »    Full Text »    PDF »
Transmembrane Domain 9 of Presenilin Determines the Dynamic Conformation of the Catalytic Site of {gamma}-Secretase.
A. Tolia, K. Horre, and B. De Strooper (2008)
J. Biol. Chem. 283, 19793-19803
   Abstract »    Full Text »    PDF »
Intriguing parasites and intramembrane proteases.
R. B. Rawson (2008)
Genes & Dev. 22, 1561-1566
   Abstract »    Full Text »    PDF »
The C-Terminal PAL Motif and Transmembrane Domain 9 of Presenilin 1 Are Involved in the Formation of the Catalytic Pore of the {gamma}-Secretase.
C. Sato, S. Takagi, T. Tomita, and T. Iwatsubo (2008)
J. Neurosci. 28, 6264-6271
   Abstract »    Full Text »    PDF »
A Potent HIV Protease Inhibitor, Darunavir, Does Not Inhibit ZMPSTE24 or Lead to an Accumulation of Farnesyl-prelamin A in Cells.
C. Coffinier, S. E. Hudon, R. Lee, E. A. Farber, C. Nobumori, J. H. Miner, D. A. Andres, H. P. Spielmann, C. A. Hrycyna, L. G. Fong, et al. (2008)
J. Biol. Chem. 283, 9797-9804
   Abstract »    Full Text »    PDF »
Substrate Recognition and Binding by RseP, an Escherichia coli Intramembrane Protease.
K. Koide, K. Ito, and Y. Akiyama (2008)
J. Biol. Chem. 283, 9562-9570
   Abstract »    Full Text »    PDF »
Building {gamma}-secretase - the bits and pieces.
D. Spasic and W. Annaert (2008)
J. Cell Sci. 121, 413-420
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882