Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 318 (5857): 1789-1792

Copyright © 2007 by the American Association for the Advancement of Science

The Arabidopsis Circadian Clock Incorporates a cADPR-Based Feedback Loop

Antony N. Dodd,1 Michael J. Gardner,1 Carlos T. Hotta,1 Katharine E. Hubbard,1 Neil Dalchau,1 John Love,1* Jean-Maurice Assie,1 Fiona C. Robertson,1 Mia Kyed Jakobsen,1{dagger} Jorge Gonçalves,2 Dale Sanders,3 Alex A. R. Webb1{ddagger}

Abstract: Transcriptional feedback loops are a feature of circadian clocks in both animals and plants. We show that the plant circadian clock also incorporates the cytosolic signaling molecule cyclic adenosine diphosphate ribose (cADPR). cADPR modulates the circadian oscillator's transcriptional feedback loops and drives circadian oscillations of Ca2+ release. The effects of antagonists of cADPR signaling, manipulation of cADPR synthesis, and mathematical simulation of the interaction of cADPR with the circadian clock indicate that cADPR forms a feedback loop within the plant circadian clock.

1 Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
2 Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK.
3 Department of Biology, University of York, York YO10 5YW, UK.

* Present address: School of Biosciences, Geoffrey Pope Building, University of Exeter EX4 4QD, UK.

{dagger} Present address: Institute for Plant Biology, Copenhagen University, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.

{ddagger} To whom correspondence should be addressed. E-mail: alex.webb{at}plantsci.cam.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Quantitative analysis of regulatory flexibility under changing environmental conditions.
K. D. Edwards, O. E. Akman, K. Knox, P. J. Lumsden, A. W. Thomson, P. E. Brown, A. Pokhilko, L. Kozma-Bognar, F. Nagy, D. A. Rand, et al. (2014)
Mol Syst Biol 6, 424
   Abstract »    Full Text »    PDF »
Calcium Signaling in Plant Endosymbiotic Organelles: Mechanism and Role in Physiology.
H. Nomura and T. Shiina (2014)
Mol Plant
   Abstract »    Full Text »    PDF »
Cell- and Stimulus Type-Specific Intracellular Free Ca2+ Signals in Arabidopsis.
M. C. Marti, M. A. Stancombe, and A. A. R. Webb (2013)
Plant Physiology 163, 625-634
   Abstract »    Full Text »    PDF »
Cycling Assay for Determining Intracellular Cyclic ADP-Ribose Levels.
S. Bruzzone and A. H. Guse (2013)
Cold Spring Harb Protoc 2013, pdb.prot072991
   Abstract »    Full Text »    PDF »
Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana.
J. Ashworth, S. Coesel, A. Lee, E. V. Armbrust, M. V. Orellana, and N. S. Baliga (2013)
PNAS 110, 7518-7523
   Abstract »    Full Text »    PDF »
Circadian Control of Chloroplast Transcription by a Nuclear-Encoded Timing Signal.
Z. B. Noordally, K. Ishii, K. A. Atkins, S. J. Wetherill, J. Kusakina, E. J. Walton, M. Kato, M. Azuma, K. Tanaka, M. Hanaoka, et al. (2013)
Science 339, 1316-1319
   Abstract »    Full Text »    PDF »
Metabolism and the Circadian Clock Converge.
K. Eckel-Mahan and P. Sassone-Corsi (2013)
Physiol Rev 93, 107-135
   Abstract »    Full Text »    PDF »
Ordered changes in histone modifications at the core of the Arabidopsis circadian clock.
J. Malapeira, L. C. Khaitova, and P. Mas (2012)
PNAS 109, 21540-21545
   Abstract »    Full Text »    PDF »
Systems Dynamic Modeling of a Guard Cell Cl- Channel Mutant Uncovers an Emergent Homeostatic Network Regulating Stomatal Transpiration.
Y. Wang, M. Papanatsiou, C. Eisenach, R. Karnik, M. Williams, A. Hills, V. L. Lew, and M. R. Blatt (2012)
Plant Physiology 160, 1956-1967
   Abstract »    Full Text »    PDF »
CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and oxidative stress responses.
A. G. Lai, C. J. Doherty, B. Mueller-Roeber, S. A. Kay, J. H. M. Schippers, and P. P. Dijkwel (2012)
PNAS 109, 17129-17134
   Abstract »    Full Text »    PDF »
Circadian Time Redoxed.
M. D. C. Belle and H. D. Piggins (2012)
Science 337, 805-806
   Abstract »    Full Text »    PDF »
Systems Dynamic Modeling of the Stomatal Guard Cell Predicts Emergent Behaviors in Transport, Signaling, and Volume Control.
Z.-H. Chen, A. Hills, U. Batz, A. Amtmann, V. L. Lew, and M. R. Blatt (2012)
Plant Physiology 159, 1235-1251
   Abstract »    Full Text »    PDF »
Arabidopsis Roots and Shoots Show Distinct Temporal Adaptation Patterns toward Nitrogen Starvation.
A. Krapp, R. Berthome, M. Orsel, S. Mercey-Boutet, A. Yu, L. Castaings, S. Elftieh, H. Major, J.-P. Renou, and F. Daniel-Vedele (2011)
Plant Physiology 157, 1255-1282
   Abstract »    Full Text »    PDF »
Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis.
K. Nozue, S. L. Harmer, and J. N. Maloof (2011)
Plant Physiology 156, 357-372
   Abstract »    Full Text »    PDF »
Interactions between plant circadian clocks and solute transport.
M. J. Haydon, L. J. Bell, and A. A. R. Webb (2011)
J. Exp. Bot. 62, 2333-2348
   Abstract »    Full Text »    PDF »
LSPR: an integrated periodicity detection algorithm for unevenly sampled temporal microarray data.
R. Yang, C. Zhang, and Z. Su (2011)
Bioinformatics 27, 1023-1025
   Abstract »    Full Text »    PDF »
The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.
N. Dalchau, S. J. Baek, H. M. Briggs, F. C. Robertson, A. N. Dodd, M. J. Gardner, M. A. Stancombe, M. J. Haydon, G.-B. Stan, J. M. Goncalves, et al. (2011)
PNAS 108, 5104-5109
   Abstract »    Full Text »    PDF »
Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in Arabidopsis.
R. E. Kerwin, J. M. Jimenez-Gomez, D. Fulop, S. L. Harmer, J. N. Maloof, and D. J. Kliebenstein (2011)
PLANT CELL 23, 471-485
   Abstract »    Full Text »    PDF »
Photosynthesis and drought: can we make metabolic connections from available data?.
C. Pinheiro and M. M. Chaves (2011)
J. Exp. Bot. 62, 869-882
   Abstract »    Full Text »    PDF »
An mRNA Blueprint for C4 Photosynthesis Derived from Comparative Transcriptomics of Closely Related C3 and C4 Species.
A. Brautigam, K. Kajala, J. Wullenweber, M. Sommer, D. Gagneul, K. L. Weber, K. M. Carr, U. Gowik, J. Mass, M. J. Lercher, et al. (2011)
Plant Physiology 155, 142-156
   Abstract »    Full Text »    PDF »
Plant Biology in the Fourth Dimension.
S. Harmer (2010)
Plant Physiology 154, 467-470
   Full Text »    PDF »
No time to lose: workshop on circadian rhythms and metabolic disease.
C. M. Silva, S. Sato, and R. N. Margolis (2010)
Genes & Dev. 24, 1456-1464
   Abstract »    Full Text »    PDF »
Analyzing circadian expression data by harmonic regression based on autoregressive spectral estimation.
R. Yang and Z. Su (2010)
Bioinformatics 26, i168-i174
   Abstract »    Full Text »    PDF »
Comparative physiology of elemental distributions in plants.
S. Conn and M. Gilliham (2010)
Ann. Bot. 105, 1081-1102
   Abstract »    Full Text »    PDF »
A circadian clock in Saccharomyces cerevisiae.
Z. Eelderink-Chen, G. Mazzotta, M. Sturre, J. Bosman, T. Roenneberg, and M. Merrow (2010)
PNAS 107, 2043-2047
   Abstract »    Full Text »    PDF »
TOC1 functions as a molecular switch connecting the circadian clock with plant responses to drought.
T. Legnaioli, J. Cuevas, and P. Mas (2009)
EMBO J. 28, 3745-3757
   Abstract »    Full Text »    PDF »
Comment on "The Arabidopsis Circadian Clock Incorporates a cADPR-Based Feedback Loop".
X. Xu, R. Graeff, Q. Xie, K. L. Gamble, T. Mori, and C. H. Johnson (2009)
Science 326, 230
   Abstract »    Full Text »    PDF »
Response to Comment on "The Arabidopsis Circadian Clock Incorporates a cADPR-Based Feedback Loop".
A. N. Dodd, M. J. Gardner, C. T. Hotta, K. E. Hubbard, N. Dalchau, F. C. Robertson, J. Love, D. Sanders, and A. A. R. Webb (2009)
Science 326, 230
   Abstract »    Full Text »    PDF »
The Circadian Clock in Arabidopsis Roots Is a Simplified Slave Version of the Clock in Shoots.
A. B. James, J. A. Monreal, G. A. Nimmo, C. L. Kelly, P. Herzyk, G. I. Jenkins, and H. G. Nimmo (2008)
Science 322, 1832-1835
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Integrating Circadian Timekeeping with Cellular Physiology.
M. C. Harrisingh and M. N. Nitabach (2008)
Science 320, 879-880
   Abstract »    Full Text »    PDF »
cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker.
J. S. O'Neill, E. S. Maywood, J. E. Chesham, J. S. Takahashi, and M. H. Hastings (2008)
Science 320, 949-953
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Daily Watch on Metabolism.
T. Imaizumi, S. A. Kay, and J. I. Schroeder (2007)
Science 318, 1730-1731
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882