Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 319 (5862): 466-469

Copyright © 2008 by the American Association for the Advancement of Science

Concurrent Fast and Slow Cycling of a Transcriptional Activator at an Endogenous Promoter

Tatiana S. Karpova,1 Min J. Kim,1 Corentin Spriet,2 Kip Nalley,1 Timothy J. Stasevich,1 Zoulika Kherrouche,3 Laurent Heliot,2 James G. McNally1*

Abstract: For gene regulation, some transcriptional activators bind periodically to promoters with either a fast (~1 minute) or a slow (~15 to 90 minutes) cycle. It is uncertain whether the fast cycle occurs on natural promoters, and the function of either cycle in transcription remains unclear. We report that fast and slow cycling can occur simultaneously on an endogenous yeast promoter and that slow cycling in this system reflects an oscillation in the fraction of accessible promoters rather than the recruitment and release of stably bound transcriptional activators. This observation, combined with single-cell measurements of messenger RNA (mRNA) production, argues that fast cycling initiates transcription and that slow cycling regulates the quantity of mRNA produced. These findings counter the prevailing view that slow cycling initiates transcription.

1 Center for Cancer Research Core Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, 41 Library Drive, Bethesda, MD 20892, USA.
2 Interdisciplinary Research Institute, Lille University of Science and Technology, CNRS USR 3078, 59021 Lille Cedex, France.
3 Institut Pasteur de Lille, UMR 8161, Institut de Biologie de Lille, 1 rue Calmette, 59021 Lille Cedex, France.

* To whom correspondence should be addressed. E-mail: mcnallyj{at}

A regulatory role for repeated decoy transcription factor binding sites in target gene expression.
T.-H. Lee and N. Maheshri (2014)
Mol Syst Biol 8, 576
   Abstract »    Full Text »    PDF »
Nucleosomes accelerate transcription factor dissociation.
Y. Luo, J. A. North, S. D. Rose, and M. G. Poirier (2014)
Nucleic Acids Res. 42, 3017-3027
   Abstract »    Full Text »    PDF »
Independent RNA polymerase II preinitiation complex dynamics and nucleosome turnover at promoter sites in vivo.
Y. Grimaldi, P. Ferrari, and M. Strubin (2014)
Genome Res. 24, 117-124
   Abstract »    Full Text »    PDF »
Stimulus-induced modulation of transcriptional bursting in a single mammalian gene.
N. Molina, D. M. Suter, R. Cannavo, B. Zoller, I. Gotic, and F. Naef (2013)
PNAS 110, 20563-20568
   Abstract »    Full Text »    PDF »
Measuring Chromatin Interaction Dynamics on the Second Time Scale at Single-Copy Genes.
K. Poorey, R. Viswanathan, M. N. Carver, T. S. Karpova, S. M. Cirimotich, J. G. McNally, S. Bekiranov, and D. T. Auble (2013)
Science 342, 369-372
   Abstract »    Full Text »    PDF »
Transcription goes digital.
T. Lionnet and R. H. Singer (2012)
EMBO Rep. 13, 313-321
   Abstract »    Full Text »    PDF »
The Nucleus Introduced.
T. Pederson (2011)
Cold Spring Harb Perspect Biol 3, a000521
   Abstract »    Full Text »    PDF »
Nuclear Physics: Quantitative Single-Cell Approaches to Nuclear Organization and Gene Expression.
T. Lionnet, B. Wu, D. Grunwald, R. H. Singer, and D. R. Larson (2011)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Dynamic Interaction of HDAC1 with a Glucocorticoid Receptor-regulated Gene Is Modulated by the Activity State of the Promoter.
Y. Qiu, D. A. Stavreva, Y. Luo, A. Indrawan, M. Chang, and G. L. Hager (2011)
J. Biol. Chem. 286, 7641-7647
   Abstract »    Full Text »    PDF »
Chromatin interaction of TATA-binding protein is dynamically regulated in human cells.
P. de Graaf, F. Mousson, B. Geverts, E. Scheer, L. Tora, A. B. Houtsmuller, and H. T. M. Timmers (2010)
J. Cell Sci. 123, 2663-2671
   Abstract »    Full Text »    PDF »
Stochastic and reversible assembly of a multiprotein DNA repair complex ensures accurate target site recognition and efficient repair.
M. S. Luijsterburg, G. von Bornstaedt, A. M. Gourdin, A. Z. Politi, M. J. Mone, D. O. Warmerdam, J. Goedhart, W. Vermeulen, R. van Driel, and T. Hofer (2010)
J. Cell Biol. 189, 445-463
   Abstract »    Full Text »    PDF »
Transcription, chromatin condensation, and gene migration.
J. G. McNally (2009)
J. Cell Biol. 185, 7-9
   Abstract »    Full Text »    PDF »
Nucleosome-binding affinity as a primary determinant of the nuclear mobility of the pioneer transcription factor FoxA.
T. Sekiya, U. M. Muthurajan, K. Luger, A. V. Tulin, and K. S. Zaret (2009)
Genes & Dev. 23, 804-809
   Abstract »    Full Text »    PDF »
TATA-binding Protein Variants That Bypass the Requirement for Mot1 in Vivo.
R. O. Sprouse, M. N. Wells, and D. T. Auble (2009)
J. Biol. Chem. 284, 4525-4535
   Abstract »    Full Text »    PDF »
Combinatorial probabilistic chromatin interactions produce transcriptional heterogeneity.
T. C. Voss, R. L. Schiltz, M.-H. Sung, T. A. Johnson, S. John, and G. L. Hager (2009)
J. Cell Sci. 122, 345-356
   Abstract »    Full Text »    PDF »
Regulation of TATA-binding protein dynamics in living yeast cells.
R. O. Sprouse, T. S. Karpova, F. Mueller, A. Dasgupta, J. G. McNally, and D. T. Auble (2008)
PNAS 105, 13304-13308
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882