Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 319 (5862): 482-484

Copyright © 2008 by the American Association for the Advancement of Science

The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae

Jerome T. Mettetal,1 Dale Muzzey,1,2 Carlos Gómez-Uribe,1,3 Alexander van Oudenaarden1*

Abstract: The propagation of information through signaling cascades spans a wide range of time scales, including the rapid ligand-receptor interaction and the much slower response of downstream gene expression. To determine which dynamic range dominates a response, we used periodic stimuli to measure the frequency dependence of signal transduction in the osmo-adaptation pathway of Saccharomyces cerevisiae. We applied system identification methods to infer a concise predictive model. We found that the dynamics of the osmo-adaptation response are dominated by a fast-acting negative feedback through the kinase Hog1 that does not require protein synthesis. After large osmotic shocks, an additional, much slower, negative feedback through gene expression allows cells to respond faster to future stimuli.

1 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2 Harvard University Graduate Biophysics Program, Harvard Medical School, Boston, MA 02115, USA.
3 Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

* To whom correspondence should be addressed: E-mail: avano{at}mit.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast.
C. Miller, B. Schwalb, K. Maier, D. Schulz, S. Dumcke, B. Zacher, A. Mayer, J. Sydow, L. Marcinowski, L. Dolken, et al. (2014)
Mol Syst Biol 7, 458
   Abstract »    Full Text »    PDF »
Strategies for cellular decision-making.
T. J. Perkins and P. S. Swain (2014)
Mol Syst Biol 5, 326
   Abstract »    Full Text »    PDF »
A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli.
T. S. Shimizu, Y. Tu, and H. C. Berg (2014)
Mol Syst Biol 6, 382
   Abstract »    Full Text »    PDF »
Systems engineering to systems biology.
M. A. Yıldırım and M. Vidal (2014)
Mol Syst Biol 4, 185
   Full Text »    PDF »
Recurrent design patterns in the feedback regulation of the mammalian signalling network.
S. Legewie, H. Herzel, H. V. Westerhoff, and N. Bluthgen (2014)
Mol Syst Biol 4, 190
   Abstract »    Full Text »    PDF »
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast.
J. Schaber, R. Baltanas, A. Bush, E. Klipp, and A. Colman-Lerner (2014)
Mol Syst Biol 8, 622
   Abstract »    Full Text »    PDF »
Microfluidic Platforms for Single-Cell Protein Analysis.
Y. Liu and A. K. Singh (2013)
Journal of Laboratory Automation 18, 446-454
   Abstract »    Full Text »    PDF »
Adaptive molecular networks controlling chemotactic migration: dynamic inputs and selection of the network architecture.
H. Chang and A. Levchenko (2013)
Phil Trans R Soc B 368, 20130117
   Abstract »    Full Text »    PDF »
A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast.
X. Yang, A. P.-T. Jost, O. D. Weiner, and C. Tang (2013)
Mol. Biol. Cell 24, 2419-2430
   Abstract »    Full Text »    PDF »
Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding.
A. Miermont, F. Waharte, S. Hu, M. N. McClean, S. Bottani, S. Leon, and P. Hersen (2013)
PNAS 110, 5725-5730
   Abstract »    Full Text »    PDF »
Systematic Identification of Signal-Activated Stochastic Gene Regulation.
G. Neuert, B. Munsky, R. Z. Tan, L. Teytelman, M. Khammash, and A. van Oudenaarden (2013)
Science 339, 584-587
   Abstract »    Full Text »    PDF »
Reciprocal Phosphorylation of Yeast Glycerol-3-Phosphate Dehydrogenases in Adaptation to Distinct Types of Stress.
Y. J. Lee, G. R. Jeschke, F. M. Roelants, J. Thorner, and B. E. Turk (2012)
Mol. Cell. Biol. 32, 4705-4717
   Abstract »    Full Text »    PDF »
The Temporal Pattern of Stimulation Determines the Extent and Duration of MAPK Activation in a Caenorhabditis elegans Sensory Neuron.
T. Tomida, S. Oda, M. Takekawa, Y. Iino, and H. Saito (2012)
Science Signaling 5, ra76
   Abstract »    Full Text »    PDF »
Response to Hyperosmotic Stress.
H. Saito and F. Posas (2012)
Genetics 192, 289-318
   Abstract »    Full Text »    PDF »
Cellular Memory of Acquired Stress Resistance in Saccharomyces cerevisiae.
Q. Guan, S. Haroon, D. G. Bravo, J. L. Will, and A. P. Gasch (2012)
Genetics 192, 495-505
   Abstract »    Full Text »    PDF »
A Synthetic Approach Reveals Extensive Tunability of Auxin Signaling.
K. A. Havens, J. M. Guseman, S. S. Jang, E. Pierre-Jerome, N. Bolten, E. Klavins, and J. L. Nemhauser (2012)
Plant Physiology 160, 135-142
   Abstract »    Full Text »    PDF »
Long-term model predictive control of gene expression at the population and single-cell levels.
J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt, and P. Hersen (2012)
PNAS 109, 14271-14276
   Abstract »    Full Text »    PDF »
p53 Dynamics Control Cell Fate.
J. E. Purvis, K. W. Karhohs, C. Mock, E. Batchelor, A. Loewer, and G. Lahav (2012)
Science 336, 1440-1444
   Abstract »    Full Text »    PDF »
Negative feedback confers mutational robustness in yeast transcription factor regulation.
C. M. Denby, J. H. Im, R. C. Yu, C. G. Pesce, and R. B. Brem (2012)
PNAS 109, 3874-3878
   Abstract »    Full Text »    PDF »
Diverse Sensitivity Thresholds in Dynamic Signaling Responses by Social Amoebae.
C. J. Wang, A. Bergmann, B. Lin, K. Kim, and A. Levchenko (2012)
Science Signaling 5, ra17
   Abstract »    Full Text »    PDF »
Load-Induced Modulation of Signal Transduction Networks.
P. Jiang, A. C. Ventura, E. D. Sontag, S. D. Merajver, A. J. Ninfa, and D. Del Vecchio (2011)
Science Signaling 4, ra67
   Abstract »    Full Text »    PDF »
Gpd1 and Gpd2 Fine-Tuning for Sustainable Reduction of Glycerol Formation in Saccharomyces cerevisiae.
G. Hubmann, S. Guillouet, and E. Nevoigt (2011)
Appl. Envir. Microbiol. 77, 5857-5867
   Abstract »    Full Text »    PDF »
The Hog1 Mitogen-Activated Protein Kinase Mediates a Hypoxic Response in Saccharomyces cerevisiae.
M. J. Hickman, D. Spatt, and F. Winston (2011)
Genetics 188, 325-338
   Abstract »    Full Text »    PDF »
Single-Cell Analysis Reveals That Insulation Maintains Signaling Specificity Between Two Yeast MAPK Pathways with Common Components.
J. C. Patterson, E. S. Klimenko, and J. Thorner (2010)
Science Signaling 3, ra75
   Abstract »    Full Text »    PDF »
Dynamic Localization of Fus3 Mitogen-Activated Protein Kinase Is Necessary To Evoke Appropriate Responses and Avoid Cytotoxic Effects.
R. E. Chen, J. C. Patterson, L. S. Goupil, and J. Thorner (2010)
Mol. Cell. Biol. 30, 4293-4307
   Abstract »    Full Text »    PDF »
Decoupling of Receptor and Downstream Signals in the Akt Pathway by Its Low-Pass Filter Characteristics.
K. A. Fujita, Y. Toyoshima, S. Uda, Y.-i. Ozaki, H. Kubota, and S. Kuroda (2010)
Science Signaling 3, ra56
   Abstract »    Full Text »    PDF »
Fourier analysis and systems identification of the p53 feedback loop.
N. Geva-Zatorsky, E. Dekel, E. Batchelor, G. Lahav, and U. Alon (2010)
PNAS 107, 13550-13555
   Abstract »    Full Text »    PDF »
Correct biological timing in Arabidopsis requires multiple light-signaling pathways.
N. Dalchau, K. E. Hubbard, F. C. Robertson, C. T. Hotta, H. M. Briggs, G.-B. Stan, J. M. Goncalves, and A. A. R. Webb (2010)
PNAS 107, 13171-13176
   Abstract »    Full Text »    PDF »
Late Phase of the Endoplasmic Reticulum Stress Response Pathway Is Regulated by Hog1 MAP Kinase.
A. A. Bicknell, J. Tourtellotte, and M. Niwa (2010)
J. Biol. Chem. 285, 17545-17555
   Abstract »    Full Text »    PDF »
Multilayered control of gene expression by stress-activated protein kinases.
E. de Nadal and F. Posas (2010)
EMBO J. 29, 4-13
   Abstract »    Full Text »    PDF »
Hybridization kinetics is different inside cells.
I. Schoen, H. Krammer, and D. Braun (2009)
PNAS 106, 21649-21654
   Abstract »    Full Text »    PDF »
New Connections, New Components, Real Dynamics.
J. S. Bader (2009)
Science Signaling 2, pe48
   Abstract »    Full Text »    PDF »
Dynamic Signaling in the Hog1 MAPK Pathway Relies on High Basal Signal Transduction.
J. Macia, S. Regot, T. Peeters, N. Conde, R. Sole, and F. Posas (2009)
Science Signaling 2, ra13
   Abstract »    Full Text »    PDF »
Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform.
R. J. Taylor, D. Falconnet, A. Niemisto, S. A. Ramsey, S. Prinz, I. Shmulevich, T. Galitski, and C. L. Hansen (2009)
PNAS 106, 3758-3763
   Abstract »    Full Text »    PDF »
Control of MAPK Specificity by Feedback Phosphorylation of Shared Adaptor Protein Ste50.
N. Hao, Y. Zeng, T. C. Elston, and H. G. Dohlman (2008)
J. Biol. Chem. 283, 33798-33802
   Abstract »    Full Text »    PDF »
Probing Pathways Periodically.
T. C. Elston (2008)
Science Signaling 1, pe47
   Abstract »    Full Text »    PDF »
Stress resistance and signal fidelity independent of nuclear MAPK function.
P. J. Westfall, J. C. Patterson, R. E. Chen, and J. Thorner (2008)
PNAS 105, 12212-12217
   Abstract »    Full Text »    PDF »
Biological switches and clocks.
J. J Tyson, R. Albert, A. Goldbeter, P. Ruoff, and J. Sible (2008)
J R Soc Interface 5, S1-S8
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882