Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 319 (5863): 624-627

Copyright © 2008 by the American Association for the Advancement of Science

Cathepsin K-Dependent Toll-Like Receptor 9 Signaling Revealed in Experimental Arthritis

Masataka Asagiri,1,2 Toshitake Hirai,1,4 Toshihiro Kunigami,1,4 Shunya Kamano,1,5 Hans-Jürgen Gober,1 Kazuo Okamoto,1 Keizo Nishikawa,1 Eicke Latz,6 Douglas T. Golenbock,6 Kazuhiro Aoki,3 Keiichi Ohya,3 Yuuki Imai,7,9 Yasuyuki Morishita,8 Kohei Miyazono,8 Shigeaki Kato,7,9 Paul Saftig,10 Hiroshi Takayanagi1,2*

Abstract: Cathepsin K was originally identified as an osteoclast-specific lysosomal protease, the inhibitor of which has been considered might have therapeutic potential. We show that inhibition of cathepsin K could potently suppress autoimmune inflammation of the joints as well as osteoclastic bone resorption in autoimmune arthritis. Furthermore, cathepsin K–/– mice were resistant to experimental autoimmune encephalomyelitis. Pharmacological inhibition or targeted disruption of cathepsin K resulted in defective Toll-like receptor 9 signaling in dendritic cells in response to unmethylated CpG DNA, which in turn led to attenuated induction of T helper 17 cells, without affecting the antigen-presenting ability of dendritic cells. These results suggest that cathepsin K plays an important role in the immune system and may serve as a valid therapeutic target in autoimmune diseases.

1 Department of Cell Signaling, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.
2 Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.
3 Department of Hard Tissue Engineering, Section of Pharmacology, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8549, Japan.
4 Nippon Chemiphar Co., Ltd., Saitama 341-0005, Japan.
5 Department of Orthopaedic Surgery, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
6 Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
7 Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan.
8 Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
9 Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
10 Biochemical Institute, Christian-Albrechts-University Kiel, D-24098 Kiel, Germany.

* To whom correspondence should be addressed. E-mail: taka.csi{at}tmd.ac.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Cathepsin K Knockout Alleviates Pressure Overload-Induced Cardiac Hypertrophy.
Y. Hua, X. Xu, G.-P. Shi, A. J. Chicco, J. Ren, and S. Nair (2013)
Hypertension 61, 1184-1192
   Abstract »    Full Text »    PDF »
Cathepsin K Is Involved in Development of Psoriasis-like Skin Lesions through TLR-Dependent Th17 Activation.
T. Hirai, T. Kanda, K. Sato, M. Takaishi, K. Nakajima, M. Yamamoto, R. Kamijima, J. DiGiovanni, and S. Sano (2013)
J. Immunol. 190, 4805-4811
   Abstract »    Full Text »    PDF »
Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors.
X. He, H. Jia, Z. Jing, and D. Liu (2013)
Acta Biochim Biophys Sin 45, 241-258
   Abstract »    Full Text »    PDF »
Extracellular cathepsin K exerts antimicrobial activity and is protective against chronic intestinal inflammation in mice.
C. Sina, S. Lipinski, O. Gavrilova, K. Aden, A. Rehman, A. Till, A. Rittger, R. Podschun, U. Meyer-Hoffert, R. Haesler, et al. (2013)
Gut 62, 520-530
   Abstract »    Full Text »    PDF »
Inhibiting Periapical Lesions through AAV-RNAi Silencing of Cathepsin K.
B. Gao, W. Chen, L. Hao, G. Zhu, S. Feng, H. Ci, X. Zhou, P. Stashenko, and Y. P. Li (2013)
Journal of Dental Research 92, 180-186
   Abstract »    Full Text »    PDF »
Osteoclast migration, differentiation and function: novel therapeutic targets for rheumatic diseases.
J. Kikuta and M. Ishii (2013)
Rheumatology 52, 226-234
   Abstract »    Full Text »    PDF »
Anti-serpin Antibody-mediated Regulation of Proteases in Autoimmune Diabetes.
R. Baldzizhar, C. Fedorchuk, M. Jha, C. Rathinam, O. Henegariu, and J. Czyzyk (2013)
J. Biol. Chem. 288, 1612-1619
   Abstract »    Full Text »    PDF »
Protease signalling: the cutting edge.
B. Turk, D. Turk, and V. Turk (2012)
EMBO J. 31, 1630-1643
   Abstract »    Full Text »    PDF »
Role for Cysteine Protease Cathepsins in Heart Disease: Focus on Biology and Mechanisms With Clinical Implication.
X. W. Cheng, G.-P. Shi, M. Kuzuya, T. Sasaki, K. Okumura, and T. Murohara (2012)
Circulation 125, 1551-1562
   Full Text »    PDF »
Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase.
S. E. Ewald, A. Engel, J. Lee, M. Wang, M. Bogyo, and G. M. Barton (2011)
J. Exp. Med. 208, 643-651
   Abstract »    Full Text »    PDF »
Dendritic Cell-Mediated In Vivo Bone Resorption.
R. Maitra, A. Follenzi, A. Yaghoobian, C. Montagna, S. Merlin, E. S. Cannizzo, J. A. Hardin, N. Cobelli, E. R. Stanley, and L. Santambrogio (2010)
J. Immunol. 185, 1485-1491
   Abstract »    Full Text »    PDF »
Phosphatidylserine-Containing Liposomes Inhibit the Differentiation of Osteoclasts and Trabecular Bone Loss.
Z. Wu, H. M. Ma, T. Kukita, Y. Nakanishi, and H. Nakanishi (2010)
J. Immunol. 184, 3191-3201
   Abstract »    Full Text »    PDF »
Identification and characterization of oligonucleotides that inhibit Toll-like receptor 2-associated immune responses.
Y.-C. Chang, W.-C. Kao, W.-Y. Wang, W.-Y. Wang, R.-B. Yang, and K. Peck (2009)
FASEB J 23, 3078-3088
   Abstract »    Full Text »    PDF »
Unc93B1 biases Toll-like receptor responses to nucleic acid in dendritic cells toward DNA- but against RNA-sensing.
R. Fukui, S.-i. Saitoh, F. Matsumoto, H. Kozuka-Hata, M. Oyama, K. Tabeta, B. Beutler, and K. Miyake (2009)
J. Exp. Med. 206, 1339-1350
   Abstract »    Full Text »    PDF »
Endocytic sequestration of the B cell antigen receptor and toll-like receptor 9 in anergic cells.
S. K. O'Neill, M. L. Veselits, M. Zhang, C. Labno, Y. Cao, A. Finnegan, M. Uccellini, M.-L. Alegre, J. C. Cambier, and M. R. Clark (2009)
PNAS 106, 6262-6267
   Abstract »    Full Text »    PDF »
Fra-1 negatively regulates lipopolysaccharide-mediated inflammatory responses.
H. Morishita, F. Saito, H. Kayama, K. Atarashi, H. Kuwata, M. Yamamoto, and K. Takeda (2009)
Int. Immunol. 21, 457-465
   Abstract »    Full Text »    PDF »
The roles of TLRs, RLRs and NLRs in pathogen recognition.
T. Kawai and S. Akira (2009)
Int. Immunol. 21, 317-337
   Abstract »    Full Text »    PDF »
Response to Letter by Yetkin and Waltenberger.
H. Kataoka (2009)
Stroke 40, e28
   Full Text »    PDF »
IMMUNOLOGY: The Toll of Cathepsin K Deficiency.
A. M. Krieg and G. B. Lipford (2008)
Science 319, 576-577
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882