Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 319 (5867): 1253-1256

Copyright © 2008 by the American Association for the Advancement of Science

Synaptic Protein Degradation Underlies Destabilization of Retrieved Fear Memory

Sue-Hyun Lee, Jun-Hyeok Choi, Nuribalhae Lee, Hye-Ryeon Lee, Jae-Ick Kim, Nam-Kyung Yu, Sun-Lim Choi, Seung-Hee Lee, Hyoung Kim, Bong-Kiun Kaang*

Abstract: Reactivated memory undergoes a rebuilding process that depends on de novo protein synthesis. This suggests that retrieval is dynamic and serves to incorporate new information into preexisting memories. However, little is known about whether or not protein degradation is involved in the reorganization of retrieved memory. We found that postsynaptic proteins were degraded in the hippocampus by polyubiquitination after retrieval of contextual fear memory. Moreover, the infusion of proteasome inhibitor into the CA1 region immediately after retrieval prevented anisomycin-induced memory impairment, as well as the extinction of fear memory. This suggests that ubiquitin- and proteasome-dependent protein degradation underlies destabilization processes after fear memory retrieval. It also provides strong evidence for the existence of reorganization processes whereby preexisting memory is disrupted by protein degradation, and updated memory is reconsolidated by protein synthesis.

National Creative Research Initiative Center for Memory, Department of Biological Sciences, College of Natural Sciences, Seoul National University, San 56-1 Silim-dong, Gwanak-gu, Seoul 151-747, Korea.

* To whom correspondence should be addressed. E-mail: kaang{at}

Persistent Long-Term Facilitation at an Identified Synapse Becomes Labile with Activation of Short-Term Heterosynaptic Plasticity.
J.-Y. Hu and S. Schacher (2014)
J. Neurosci. 34, 4776-4785
   Abstract »    Full Text »    PDF »
The Time Course of Task-Specific Memory Consolidation Effects in Resting State Networks.
S. Sami, E. M. Robertson, and R. C. Miall (2014)
J. Neurosci. 34, 3982-3992
   Abstract »    Full Text »    PDF »
Reconsolidation and Extinction Are Dissociable and Mutually Exclusive Processes: Behavioral and Molecular Evidence.
E. Merlo, A. L. Milton, Z. Y. Goozee, D. E. Theobald, and B. J. Everitt (2014)
J. Neurosci. 34, 2422-2431
   Abstract »    Full Text »    PDF »
The ubiquitin-specific protease 14 (USP14) is a critical regulator of long-term memory formation.
T. J. Jarome, J. L. Kwapis, J. J. Hallengren, S. M. Wilson, and F. J. Helmstetter (2014)
Learn. Mem. 21, 9-13
   Abstract »    Full Text »    PDF »
Memory destabilization is critical for the success of the reactivation-extinction procedure.
M. E. Pineyro, R. I. Ferrer Monti, J. M. Alfei, A. M. Bueno, and G. P. Urcelay (2014)
Learn. Mem. 21, 46-54
   Abstract »    Full Text »    PDF »
Zif268/Egr1 gain of function facilitates hippocampal synaptic plasticity and long-term spatial recognition memory.
Z. Penke, E. Morice, A. Veyrac, A. Gros, C. Chagneau, P. LeBlanc, N. Samson, K. Baumgartel, I. M. Mansuy, S. Davis, et al. (2013)
Phil Trans R Soc B 369, 20130159
   Abstract »    Full Text »    PDF »
The roles of protein kinases in learning and memory.
K. P. Giese and K. Mizuno (2013)
Learn. Mem. 20, 540-552
   Abstract »    Full Text »    PDF »
Rines E3 Ubiquitin Ligase Regulates MAO-A Levels and Emotional Responses.
M. Kabayama, K. Sakoori, K. Yamada, V. G. Ornthanalai, M. Ota, N. Morimura, K.-i. Katayama, N. P. Murphy, and J. Aruga (2013)
J. Neurosci. 33, 12940-12953
   Abstract »    Full Text »    PDF »
AMPA receptor exchange underlies transient memory destabilization on retrieval.
I. Hong, J. Kim, J. Kim, S. Lee, H.-G. Ko, K. Nader, B.-K. Kaang, R. W. Tsien, and S. Choi (2013)
PNAS 110, 8218-8223
   Abstract »    Full Text »    PDF »
Memory reconsolidation and its maintenance depend on L-voltage-dependent calcium channels and CaMKII functions regulating protein turnover in the hippocampus.
W. C. Da Silva, G. Cardoso, J. S. Bonini, F. Benetti, and I. Izquierdo (2013)
PNAS 110, 6566-6570
   Abstract »    Full Text »    PDF »
A BDNF sensitive mechanism is involved in the fear memory resulting from the interaction between stress and the retrieval of an established trace.
M. Giachero, S. G. Bustos, G. Calfa, and V. A. Molina (2013)
Learn. Mem. 20, 245-255
   Abstract »    Full Text »    PDF »
Double Dissociation of the Requirement for GluN2B- and GluN2A-Containing NMDA Receptors in the Destabilization and Restabilization of a Reconsolidating Memory.
A. L. Milton, E. Merlo, P. Ratano, B. L. Gregory, J. K. Dumbreck, and B. J. Everitt (2013)
J. Neurosci. 33, 1109-1115
   Abstract »    Full Text »    PDF »
The E3 ligase APC/C-Cdh1 is required for associative fear memory and long-term potentiation in the amygdala of adult mice.
J. E. Pick, M. Malumbres, and E. Klann (2012)
Learn. Mem. 20, 11-20
   Abstract »    Full Text »    PDF »
A role of protein degradation in memory consolidation after initial learning and extinction learning in the honeybee (Apis mellifera).
J. Felsenberg, V. Dombrowski, and D. Eisenhardt (2012)
Learn. Mem. 19, 470-477
   Abstract »    Full Text »    PDF »
Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory.
E. O. Einarsson and K. Nader (2012)
Learn. Mem. 19, 449-452
   Abstract »    Full Text »    PDF »
p300/CBP-Associated Factor Selectively Regulates the Extinction of Conditioned Fear.
W. Wei, C. M. Coelho, X. Li, R. Marek, S. Yan, S. Anderson, D. Meyers, C. Mukherjee, G. Sbardella, S. Castellano, et al. (2012)
J. Neurosci. 32, 11930-11941
   Abstract »    Full Text »    PDF »
A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia.
S.-H. Lee, C. Kwak, J. Shim, J.-E. Kim, S.-L. Choi, H. F. Kim, D.-J. Jang, J.-A. Lee, K. Lee, C.-H. Lee, et al. (2012)
PNAS 109, 14200-14205
   Abstract »    Full Text »    PDF »
Memory reactivation effects independent of reconsolidation.
P. Gisquet-Verrier and D. C. Riccio (2012)
Learn. Mem. 19, 401-409
   Abstract »    Full Text »    PDF »
The molecular basis of cognitive deficits in pervasive developmental disorders.
A. Bhattacharya and E. Klann (2012)
Learn. Mem. 19, 434-443
   Abstract »    Full Text »    PDF »
Neuronal Stimulation Induces Autophagy in Hippocampal Neurons That Is Involved in AMPA Receptor Degradation after Chemical Long-Term Depression.
M. Shehata, H. Matsumura, R. Okubo-Suzuki, N. Ohkawa, and K. Inokuchi (2012)
J. Neurosci. 32, 10413-10422
   Abstract »    Full Text »    PDF »
The timing of multiple retrieval events can alter GluR1 phosphorylation and the requirement for protein synthesis in fear memory reconsolidation.
T. J. Jarome, J. L. Kwapis, C. T. Werner, R. G. Parsons, G. M. Gafford, and F. J. Helmstetter (2012)
Learn. Mem. 19, 300-306
   Abstract »    Full Text »    PDF »
Phosphorylation of Rpt6 Regulates Synaptic Strength in Hippocampal Neurons.
S. N. Djakovic, E. M. Marquez-Lona, S. K. Jakawich, R. Wright, C. Chu, M. A. Sutton, and G. N. Patrick (2012)
J. Neurosci. 32, 5126-5131
   Abstract »    Full Text »    PDF »
The Postsynaptic Organization of Synapses.
M. Sheng and E. Kim (2011)
Cold Spring Harb Perspect Biol 3, a005678
   Abstract »    Full Text »    PDF »
Reconsolidation or Extinction: Transcription Factor Switch in the Determination of Memory Course after Retrieval.
V. de la Fuente, R. Freudenthal, and A. Romano (2011)
J. Neurosci. 31, 5562-5573
   Abstract »    Full Text »    PDF »
The anaphase promoting complex is required for memory function in mice.
T. Kuczera, R. M. Stilling, H.-E. Hsia, S. Bahari-Javan, S. Irniger, K. Nasmyth, F. Sananbenesi, and A. Fischer (2010)
Learn. Mem. 18, 49-57
   Abstract »    Full Text »    PDF »
The sensitivity of memory consolidation and reconsolidation to inhibitors of protein synthesis and kinases: Computational analysis.
Y. Zhang, P. Smolen, D. A. Baxter, and J. H. Byrne (2010)
Learn. Mem. 17, 428-439
   Abstract »    Full Text »    PDF »
Reactivation of Fear Memory Renders Consolidated Amygdala Synapses Labile.
J. Kim, B. Song, I. Hong, J. Kim, J. Lee, S. Park, J. Yong Eom, C. J. Lee, S. Lee, and S. Choi (2010)
J. Neurosci. 30, 9631-9640
   Abstract »    Full Text »    PDF »
The ubiquitin-proteasome pathway and synaptic plasticity.
A. N. Hegde (2010)
Learn. Mem. 17, 314-327
   Abstract »    Full Text »    PDF »
Drosophila Orb2 targets genes involved in neuronal growth, synapse formation, and protein turnover.
T. Mastushita-Sakai, E. White-Grindley, J. Samuelson, C. Seidel, and K. Si (2010)
PNAS 107, 11987-11992
   Abstract »    Full Text »    PDF »
Fear and safety learning differentially affect synapse size and dendritic translation in the lateral amygdala.
L. E. Ostroff, C. K. Cain, J. Bedont, M. H. Monfils, and J. E. LeDoux (2010)
PNAS 107, 9418-9423
   Abstract »    Full Text »    PDF »
Activin plays a key role in the maintenance of long-term memory and late-LTP.
H. Ageta, S. Ikegami, M. Miura, M. Masuda, R. Migishima, T. Hino, N. Takashima, A. Murayama, H. Sugino, M. Setou, et al. (2010)
Learn. Mem. 17, 176-185
   Abstract »    Full Text »    PDF »
Synaptic Protein Degradation as a Mechanism in Memory Reorganization.
B.-K. Kaang, S.-H. Lee, and H. Kim (2009)
Neuroscientist 15, 430-435
   Abstract »    PDF »
Regulation of the Proteasome by Neuronal Activity and Calcium/Calmodulin-dependent Protein Kinase II.
S. N. Djakovic, L. A. Schwarz, B. Barylko, G. N. DeMartino, and G. N. Patrick (2009)
J. Biol. Chem. 284, 26655-26665
   Abstract »    Full Text »    PDF »
Older and stronger object memories are selectively destabilized by reactivation in the presence of new information.
B. D. Winters, M. C. Tucci, and M. DaCosta-Furtado (2009)
Learn. Mem. 16, 545-553
   Abstract »    Full Text »    PDF »
Regulation of Synaptic Structure by Ubiquitin C-Terminal Hydrolase L1.
A. E. Cartier, S. N. Djakovic, A. Salehi, S. M. Wilson, E. Masliah, and G. N. Patrick (2009)
J. Neurosci. 29, 7857-7868
   Abstract »    Full Text »    PDF »
Hippocampal Erk mechanisms linking prediction error to fear extinction: Roles of shock expectancy and contextual aversive valence.
K. H. Huh, Y. F. Guzman, N. C. Tronson, A. L. Guedea, C. Gao, and J. Radulovic (2009)
Learn. Mem. 16, 273-278
   Abstract »    Full Text »    PDF »
Segregated Populations of Hippocampal Principal CA1 Neurons Mediating Conditioning and Extinction of Contextual Fear.
N. C. Tronson, C. Schrick, Y. F. Guzman, K. H. Huh, D. P. Srivastava, P. Penzes, A. L. Guedea, C. Gao, and J. Radulovic (2009)
J. Neurosci. 29, 3387-3394
   Abstract »    Full Text »    PDF »
Brain Region-Specific Gene Expression Activation Required for Reconsolidation and Extinction of Contextual Fear Memory.
N. Mamiya, H. Fukushima, A. Suzuki, Z. Matsuyama, S. Homma, P. W. Frankland, and S. Kida (2009)
J. Neurosci. 29, 402-413
   Abstract »    Full Text »    PDF »
The Ubiquitin-Proteasome System Is Necessary for Long-Term Synaptic Depression in Aplysia.
D. Fioravante, R.-Y. Liu, and J. H. Byrne (2008)
J. Neurosci. 28, 10245-10256
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882