Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 319 (5870): 1683-1687

Copyright © 2008 by the American Association for the Advancement of Science

Protein Synthesis and Neurotrophin-Dependent Structural Plasticity of Single Dendritic Spines

Jun-ichi Tanaka,1,2,3* Yoshihiro Horiike,1,2* Masanori Matsuzaki,1,2,3,4 Takashi Miyazaki,1,2,3 Graham C. R. Ellis-Davies,5 Haruo Kasai1,2,3{dagger}

Abstract: Long-term potentiation (LTP) at glutamatergic synapses is considered to underlie learning and memory and is associated with the enlargement of dendritic spines. Because the consolidation of memory and LTP require protein synthesis, it is important to clarify how protein synthesis affects spine enlargement. In rat brain slices, the repetitive pairing of postsynaptic spikes and two-photon uncaging of glutamate at single spines (a spike-timing protocol) produced both immediate and gradual phases of spine enlargement in CA1 pyramidal neurons. The gradual enlargement was strongly dependent on protein synthesis and brain-derived neurotrophic factor (BDNF) action, often associated with spine twitching, and was induced specifically at the spines that were immediately enlarged by the synaptic stimulation. Thus, this spike-timing protocol is an efficient trigger for BDNF secretion and induces protein synthesis–dependent long-term enlargement at the level of single spines.

1 Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan.
2 Center for NanoBio Integration, University of Tokyo, Tokyo 113-0033, Japan.
3 Department of Cell Physiology, National Institute for Physiological Sciences, and Graduate University of Advanced Studies (SOKENDAI), Myodaiji, Okazaki 444-8787, Japan.
4 PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, Japan.
5 Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: hkasai{at}m.u-tokyo.ac.jp


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Local Impermeant Anions Establish the Neuronal Chloride Concentration.
J. Glykys, V. Dzhala, K. Egawa, T. Balena, Y. Saponjian, K. V. Kuchibhotla, B. J. Bacskai, K. T. Kahle, T. Zeuthen, and K. J. Staley (2014)
Science 343, 670-675
   Abstract »    Full Text »    PDF »
Pansynaptic Enlargement at Adult Cortical Connections Strengthened by Experience.
C. E. J. Cheetham, S. J. Barnes, G. Albieri, G. W. Knott, and G. T. Finnerty (2014)
Cereb Cortex 24, 521-531
   Abstract »    Full Text »    PDF »
Single {beta}-Actin mRNA Detection in Neurons Reveals a Mechanism for Regulating Its Translatability.
A. R. Buxbaum, B. Wu, and R. H. Singer (2014)
Science 343, 419-422
   Abstract »    Full Text »    PDF »
Dendritic Spines: The Locus of Structural and Functional Plasticity.
C. Sala and M. Segal (2014)
Physiol Rev 94, 141-188
   Abstract »    Full Text »    PDF »
Spike-timing-dependent BDNF secretion and synaptic plasticity.
H. Lu, H. Park, and M.-M. Poo (2013)
Phil Trans R Soc B 369, 20130132
   Abstract »    Full Text »    PDF »
Growth factor signaling and memory formation: temporal and spatial integration of a molecular network.
A. M. Kopec and T. J. Carew (2013)
Learn. Mem. 20, 531-539
   Abstract »    Full Text »    PDF »
Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction.
D. T. Balu, Y. Li, M. D. Puhl, M. A. Benneyworth, A. C. Basu, S. Takagi, V. Y. Bolshakov, and J. T. Coyle (2013)
PNAS 110, E2400-E2409
   Abstract »    Full Text »    PDF »
Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity.
E. Menna, S. Zambetti, R. Morini, A. Donzelli, A. Disanza, D. Calvigioni, D. Braida, C. Nicolini, M. Orlando, G. Fossati, et al. (2013)
EMBO J. 32, 1730-1744
   Abstract »    Full Text »    PDF »
Post-retrieval late process contributes to persistence of reactivated fear memory.
D. Nakayama, Y. Yamasaki, N. Matsuki, and H. Nomura (2013)
Learn. Mem. 20, 307-310
   Abstract »    Full Text »    PDF »
Selective Regulation of GluA Subunit Synthesis and AMPA Receptor-Mediated Synaptic Function and Plasticity by the Translation Repressor 4E-BP2 in Hippocampal Pyramidal Cells.
I. Ran, C. G. Gkogkas, C. Vasuta, M. Tartas, A. Khoutorsky, I. Laplante, A. Parsyan, T. Nevarko, N. Sonenberg, and J.-C. Lacaille (2013)
J. Neurosci. 33, 1872-1886
   Abstract »    Full Text »    PDF »
Brain-Derived Neurotrophic Factor-Dependent Synaptic Plasticity Is Suppressed by Interleukin-1{beta} via p38 Mitogen-Activated Protein Kinase.
L. Tong, G. A. Prieto, E. A. Kramar, E. D. Smith, D. H. Cribbs, G. Lynch, and C. W. Cotman (2012)
J. Neurosci. 32, 17714-17724
   Abstract »    Full Text »    PDF »
Genetic evidence that brain-derived neurotrophic factor mediates competitive interactions between individual cortical neurons.
C. N. English, A. J. Vigers, and K. R. Jones (2012)
PNAS 109, 19456-19461
   Abstract »    Full Text »    PDF »
Structural Modulation of Dendritic Spines during Synaptic Plasticity.
D. A. Fortin, T. Srivastava, and T. R. Soderling (2012)
Neuroscientist 18, 326-341
   Abstract »    Full Text »    PDF »
Human Immunodeficiency Virus Type 1 Alters Brain-Derived Neurotrophic Factor Processing in Neurons.
A. Bachis, V. Avdoshina, L. Zecca, M. Parsadanian, and I. Mocchetti (2012)
J. Neurosci. 32, 9477-9484
   Abstract »    Full Text »    PDF »
Photochemical Inactivation Analysis of Temporal Dynamics of Postsynaptic Native AMPA Receptors in Hippocampal Slices.
H. Kamiya (2012)
J. Neurosci. 32, 6517-6524
   Abstract »    Full Text »    PDF »
Rescue from excitotoxicity and axonal degeneration accompanied by age-dependent behavioral and neuroanatomical alterations in caspase-6-deficient mice.
V. Uribe, B. K. Y. Wong, R. K. Graham, C. L. Cusack, N. H. Skotte, M. A. Pouladi, Y. Xie, K. Feinberg, Y. Ou, Y. Ouyang, et al. (2012)
Hum. Mol. Genet. 21, 1954-1967
   Abstract »    Full Text »    PDF »
Dendritic BDNF Synthesis Is Required for Late-Phase Spine Maturation and Recovery of Cortical Responses Following Sensory Deprivation.
M. Kaneko, Y. Xie, J. J. An, M. P. Stryker, and B. Xu (2012)
J. Neurosci. 32, 4790-4802
   Abstract »    Full Text »    PDF »
BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons.
S. Dieni, T. Matsumoto, M. Dekkers, S. Rauskolb, M. S. Ionescu, R. Deogracias, E. D. Gundelfinger, M. Kojima, S. Nestel, M. Frotscher, et al. (2012)
J. Cell Biol. 196, 775-788
   Abstract »    Full Text »    PDF »
RNA Binding Proteins Accumulate at the Postsynaptic Density with Synaptic Activity.
G. Zhang, T. A. Neubert, and B. A. Jordan (2012)
J. Neurosci. 32, 599-609
   Abstract »    Full Text »    PDF »
Self-amplifying autocrine actions of BDNF in axon development.
P.-L. Cheng, A.-H. Song, Y.-H. Wong, S. Wang, X. Zhang, and M.-M. Poo (2011)
PNAS 108, 18430-18435
   Abstract »    Full Text »    PDF »
BDNF-Induced Increase of PSD-95 in Dendritic Spines Requires Dynamic Microtubule Invasions.
X. Hu, L. Ballo, L. Pietila, C. Viesselmann, J. Ballweg, D. Lumbard, M. Stevenson, E. Merriam, and E. W. Dent (2011)
J. Neurosci. 31, 15597-15603
   Abstract »    Full Text »    PDF »
Spatial segregation of BDNF transcripts enables BDNF to differentially shape distinct dendritic compartments.
G. Baj, E. Leone, M. V. Chao, and E. Tongiorgi (2011)
PNAS 108, 16813-16818
   Abstract »    Full Text »    PDF »
Essential Role for Vav Guanine Nucleotide Exchange Factors in Brain-Derived Neurotrophic Factor-Induced Dendritic Spine Growth and Synapse Plasticity.
C. F. Hale, K. C. Dietz, J. A. Varela, C. B. Wood, B. C. Zirlin, L. S. Leverich, R. W. Greene, and C. W. Cowan (2011)
J. Neurosci. 31, 12426-12436
   Abstract »    Full Text »    PDF »
TrkB and Protein Kinase M {zeta} Regulate Synaptic Localization of PSD-95 in Developing Cortex.
A. Yoshii, Y. Murata, J. Kim, C. Zhang, K. M. Shokat, and M. Constantine-Paton (2011)
J. Neurosci. 31, 11894-11904
   Abstract »    Full Text »    PDF »
A Kinase Anchor Protein 150 (AKAP150)-associated Protein Kinase A Limits Dendritic Spine Density.
Y. Lu, X.-m. Zha, E. Y. Kim, S. Schachtele, M. E. Dailey, D. D. Hall, S. Strack, S. H. Green, D. A. Hoffman, and J. W. Hell (2011)
J. Biol. Chem. 286, 26496-26506
   Abstract »    Full Text »    PDF »
Rapid increase in clusters of synaptophysin at onset of homosynaptic potentiation in Aplysia.
I. Jin, H. Udo, and R. D. Hawkins (2011)
PNAS 108, 11656-11661
   Abstract »    Full Text »    PDF »
An Increase in Basal BDNF Provokes Hyperactivation of the Akt-Mammalian Target of Rapamycin Pathway and Deregulation of Local Dendritic Translation in a Mouse Model of Down's Syndrome.
J. A. Troca-Marin, A. Alves-Sampaio, and M. L. Montesinos (2011)
J. Neurosci. 31, 9445-9455
   Abstract »    Full Text »    PDF »
Transsynaptic EphB/Ephrin-B Signaling Regulates Growth of Presynaptic Boutons Required for Classical Conditioning.
W. Li, Z. Zheng, and J. Keifer (2011)
J. Neurosci. 31, 8441-8449
   Abstract »    Full Text »    PDF »
In vivo two-photon uncaging of glutamate revealing the structure-function relationships of dendritic spines in the neocortex of adult mice.
J. Noguchi, A. Nagaoka, S. Watanabe, G. C. R. Ellis-Davies, K. Kitamura, M. Kano, M. Matsuzaki, and H. Kasai (2011)
J. Physiol. 589, 2447-2457
   Abstract »    Full Text »    PDF »
The lighter side of BDNF.
E. E. Noble, C. J. Billington, C. M. Kotz, and C. Wang (2011)
Am J Physiol Regulatory Integrative Comp Physiol 300, R1053-R1069
   Abstract »    Full Text »    PDF »
AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression.
K. He, A. Lee, L. Song, P. O. Kanold, and H.-K. Lee (2011)
J Neurophysiol 105, 1897-1907
   Abstract »    Full Text »    PDF »
Involvement of ryanodine receptors in neurotrophin-induced hippocampal synaptic plasticity and spatial memory formation.
T. Adasme, P. Haeger, A. C. Paula-Lima, I. Espinoza, M. M. Casas-Alarcon, M. A. Carrasco, and C. Hidalgo (2011)
PNAS 108, 3029-3034
   Abstract »    Full Text »    PDF »
Channelrhodopsin as a tool to investigate synaptic transmission and plasticity.
P. Schoenenberger, Y.-P. Z. Scharer, and T. G. Oertner (2011)
Exp Physiol 96, 34-39
   Abstract »    Full Text »    PDF »
Drosophila Orb2 targets genes involved in neuronal growth, synapse formation, and protein turnover.
T. Mastushita-Sakai, E. White-Grindley, J. Samuelson, C. Seidel, and K. Si (2010)
PNAS 107, 11987-11992
   Abstract »    Full Text »    PDF »
Fear and safety learning differentially affect synapse size and dendritic translation in the lateral amygdala.
L. E. Ostroff, C. K. Cain, J. Bedont, M. H. Monfils, and J. E. LeDoux (2010)
PNAS 107, 9418-9423
   Abstract »    Full Text »    PDF »
N-cadherin mediates plasticity-induced long-term spine stabilization.
P. Mendez, M. De Roo, L. Poglia, P. Klauser, and D. Muller (2010)
J. Cell Biol. 189, 589-600
   Abstract »    Full Text »    PDF »
BDNF Val66Met Polymorphism Influences Motor System Function in the Human Brain.
S. A. McHughen, P. F. Rodriguez, J. A. Kleim, E. D. Kleim, L. M. Crespo, V. Procaccio, and S. C. Cramer (2010)
Cereb Cortex 20, 1254-1262
   Abstract »    Full Text »    PDF »
Synaptic Activity Controls Dendritic Spine Morphology by Modulating eEF2-Dependent BDNF Synthesis.
C. Verpelli, G. Piccoli, C. Zibetti, A. Zanchi, F. Gardoni, K. Huang, D. Brambilla, M. Di Luca, E. Battaglioli, and C. Sala (2010)
J. Neurosci. 30, 5830-5842
   Abstract »    Full Text »    PDF »
Brain-Derived Neurotrophic Factor Is Associated with Age-Related Decline in Hippocampal Volume.
K. I. Erickson, R. S. Prakash, M. W. Voss, L. Chaddock, S. Heo, M. McLaren, B. D. Pence, S. A. Martin, V. J. Vieira, J. A. Woods, et al. (2010)
J. Neurosci. 30, 5368-5375
   Abstract »    Full Text »    PDF »
The Roles of CaMKII and F-Actin in the Structural Plasticity of Dendritic Spines: A Potential Molecular Identity of a Synaptic Tag?.
K. Okamoto, M. Bosch, and Y. Hayashi (2009)
Physiology 24, 357-366
   Abstract »    Full Text »    PDF »
Off-target effects of epidermal growth factor receptor antagonists mediate retinal ganglion cell disinhibited axon growth.
M. R. Douglas, K. C. Morrison, S. J. Jacques, W. E. Leadbeater, A. M. Gonzalez, M. Berry, A. Logan, and Z. Ahmed (2009)
Brain 132, 3102-3121
   Abstract »    Full Text »    PDF »
Spine Modifications Associated with Long-Term Potentiation.
Y. Yang and Q. Zhou (2009)
Neuroscientist 15, 464-476
   Abstract »    PDF »
Interfering with the Actin Network and Its Effect on Long-Term Potentiation and Synaptic Tagging in Hippocampal CA1 Neurons in Slices In Vitro.
B. Ramachandran and J. U. Frey (2009)
J. Neurosci. 29, 12167-12173
   Abstract »    Full Text »    PDF »
Behavioral tagging is a general mechanism of long-term memory formation.
F. Ballarini, D. Moncada, M. C. Martinez, N. Alen, and H. Viola (2009)
PNAS 106, 14599-14604
   Abstract »    Full Text »    PDF »
Computational Implications of Cooperative Plasticity Induction at Nearby Dendritic Sites.
K. Morita (2009)
Science Signaling 2, pe2
   Abstract »    Full Text »    PDF »
Principles of Long-Term Dynamics of Dendritic Spines.
N. Yasumatsu, M. Matsuzaki, T. Miyazaki, J. Noguchi, and H. Kasai (2008)
J. Neurosci. 28, 13592-13608
   Abstract »    Full Text »    PDF »
Extracellular proteolysis by matrix metalloproteinase-9 drives dendritic spine enlargement and long-term potentiation coordinately.
X.-b. Wang, O. Bozdagi, J. S. Nikitczuk, Z. W. Zhai, Q. Zhou, and G. W. Huntley (2008)
PNAS 105, 19520-19525
   Abstract »    Full Text »    PDF »
Live-cell imaging of dendritic spines by STED microscopy.
U. V. Nagerl, K. I. Willig, B. Hein, S. W. Hell, and T. Bonhoeffer (2008)
PNAS 105, 18982-18987
   Abstract »    Full Text »    PDF »
Dissecting the Components of Long-Term Potentiation.
J. A. Blundon and S. S. Zakharenko (2008)
Neuroscientist 14, 598-608
   Abstract »    PDF »
The Immediate Early Gene Arc/Arg3.1: Regulation, Mechanisms, and Function.
C. R. Bramham, P. F. Worley, M. J. Moore, and J. F. Guzowski (2008)
J. Neurosci. 28, 11760-11767
   Abstract »    Full Text »    PDF »
Backpropagating Action Potentials Trigger Dendritic Release of BDNF during Spontaneous Network Activity.
N. Kuczewski, C. Porcher, N. Ferrand, H. Fiorentino, C. Pellegrino, R. Kolarow, V. Lessmann, I. Medina, and J.-L. Gaiarsa (2008)
J. Neurosci. 28, 7013-7023
   Abstract »    Full Text »    PDF »
NEUROSCIENCE: A Protoplasmic Kiss to Remember.
M. Korte (2008)
Science 319, 1627-1628
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882