Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 320 (5873): 233-236

Copyright © 2008 by the American Association for the Advancement of Science

Segregation of Axial Motor and Sensory Pathways via Heterotypic Trans-Axonal Signaling

Benjamin W. Gallarda,1* Dario Bonanomi,1* Daniel Müller,2,3* Arthur Brown,4 William A. Alaynick,1 Shane E. Andrews,1 Greg Lemke,5 Samuel L. Pfaff,1{dagger} Till Marquardt2,3{dagger}

Abstract: Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A -> EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways.

1 Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
2 Developmental Neurobiology Laboratory, European Neuroscience Institute Göttingen, Max Planck Society/University Medical School Göttingen, Grisebachstrasse 5, 37077 Göttingen, Germany.
3 Deutsche Forschungsgemeinschaft Emmy Noether Group, European Neuroscience Institute Göttingen, Grisebach-strasse 5, 37077 Göttingen, Germany.
4 Biotherapeutics Research Group, Robarts Research Institute, Department of Anatomy and Cell Biology, University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8, Canada.
5 Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: till.marquardt{at} (T.M.); pfaff{at} (S.L.P.)

Dlk1 Promotes a Fast Motor Neuron Biophysical Signature Required for Peak Force Execution.
D. Muller, P. Cherukuri, K. Henningfeld, C. H. Poh, L. Wittler, P. Grote, O. Schluter, J. Schmidt, J. Laborda, S. R. Bauer, et al. (2014)
Science 343, 1264-1266
   Abstract »    Full Text »    PDF »
Investigating the contribution of VAPB/ALS8 loss of function in amyotrophic lateral sclerosis.
E. Kabashi, H. El Oussini, V. Bercier, F. Gros-Louis, P. N. Valdmanis, J. McDearmid, I. A. Mejier, P. A. Dion, N. Dupre, D. Hollinger, et al. (2013)
Hum. Mol. Genet. 22, 2350-2360
   Abstract »    Full Text »    PDF »
Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.
N. Usui, K. Watanabe, K. Ono, K. Tomita, N. Tamamaki, K. Ikenaka, and H. Takebayashi (2012)
Development 139, 1125-1132
   Abstract »    Full Text »    PDF »
Concentration-Dependent Requirement for Local Protein Synthesis in Motor Neuron Subtype-Specific Response to Axon Guidance Cues.
S. Nedelec, M. Peljto, P. Shi, M. W. Amoroso, L. C. Kam, and H. Wichterle (2012)
J. Neurosci. 32, 1496-1506
   Abstract »    Full Text »    PDF »
Segregation and Pathfinding of Callosal Axons through EphA3 Signaling.
M. Nishikimi, K. Oishi, H. Tabata, K. Torii, and K. Nakajima (2011)
J. Neurosci. 31, 16251-16260
   Abstract »    Full Text »    PDF »
EphA4 preserves postnatal and adult neural stem cells in an undifferentiated state in vivo.
K. Khodosevich, Y. Watanabe, and H. Monyer (2011)
J. Cell Sci. 124, 1268-1279
   Abstract »    Full Text »    PDF »
Cellular Strategies of Axonal Pathfinding.
J. Raper and C. Mason (2010)
Cold Spring Harb Perspect Biol 2, a001933
   Abstract »    Full Text »    PDF »
Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection.
E. Hedlund, M. Karlsson, T. Osborn, W. Ludwig, and O. Isacson (2010)
Brain 133, 2313-2330
   Abstract »    Full Text »    PDF »
Motor Axon Pathfinding.
D. Bonanomi and S. L. Pfaff (2010)
Cold Spring Harb Perspect Biol 2, a001735
   Abstract »    Full Text »    PDF »
Pre-Target Axon Sorting Establishes the Neural Map Topography.
T. Imai, T. Yamazaki, R. Kobayakawa, K. Kobayakawa, T. Abe, M. Suzuki, and H. Sakano (2009)
Science 325, 585-590
   Abstract »    Full Text »    PDF »
Pathway and network-based analysis of genome-wide association studies in multiple sclerosis.
S. E. Baranzini, N. W. Galwey, J. Wang, P. Khankhanian, R. Lindberg, D. Pelletier, W. Wu, B. M.J. Uitdehaag, L. Kappos, GeneMSA Consortium, et al. (2009)
Hum. Mol. Genet. 18, 2078-2090
   Abstract »    Full Text »    PDF »
Crystal Structure and NMR Binding Reveal That Two Small Molecule Antagonists Target the High Affinity Ephrin-binding Channel of the EphA4 Receptor.
H. Qin, J. Shi, R. Noberini, E. B. Pasquale, and J. Song (2008)
J. Biol. Chem. 283, 29473-29484
   Abstract »    Full Text »    PDF »
NEUROSCIENCE: Axons Seek Neighborly Advice.
K. K. Murai and E. B. Pasquale (2008)
Science 320, 185-186
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882