Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 320 (5874): 379-381

Copyright © 2008 by the American Association for the Advancement of Science

Structural Basis of Toll-Like Receptor 3 Signaling with Double-Stranded RNA

Lin Liu,1 Istvan Botos,1 Yan Wang,2 Joshua N. Leonard,2 Joseph Shiloach,3 David M. Segal,2 David R. Davies1*

Abstract: Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA), a molecular signature of most viruses, and triggers inflammatory responses that prevent viral spread. TLR3 ectodomains (ECDs) dimerize on oligonucleotides of at least 40 to 50 base pairs in length, the minimal length required for signal transduction. To establish the molecular basis for ligand binding and signaling, we determined the crystal structure of a complex between two mouse TLR3-ECDs and dsRNA at 3.4 angstrom resolution. Each TLR3-ECD binds dsRNA at two sites located at opposite ends of the TLR3 horseshoe, and an intermolecular contact between the two TLR3-ECD C-terminal domains coordinates and stabilizes the dimer. This juxtaposition could mediate downstream signaling by dimerizing the cytoplasmic Toll interleukin-1 receptor (TIR) domains. The overall shape of the TLR3-ECD does not change upon binding to dsRNA.

1 Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
2 Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD20892, USA.
3 Biotechnology Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.

* To whom correspondence should be addressed: david.davies{at}

Cytokine Spatzle binds to the Drosophila immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation.
M. Lewis, C. J. Arnot, H. Beeston, A. McCoy, A. E. Ashcroft, N. J. Gay, and M. Gangloff (2013)
PNAS 110, 20461-20466
   Abstract »    Full Text »    PDF »
Length of dsRNA (poly I:C) drives distinct innate immune responses, depending on the cell type.
M. F. Mian, A. N. Ahmed, M. Rad, A. Babaian, D. Bowdish, and A. A. Ashkar (2013)
J. Leukoc. Biol. 94, 1025-1036
   Abstract »    Full Text »    PDF »
Inhibition of Hepatitis C Virus (HCV) Replication by Specific RNA Aptamers against HCV NS5B RNA Replicase.
C. H. Lee, Y. J. Lee, J. H. Kim, J. H. Lim, J.-H. Kim, W. Han, S.-H. Lee, G.-J. Noh, and S.-W. Lee (2013)
J. Virol. 87, 7064-7074
   Abstract »    Full Text »    PDF »
Sisters in arms: myeloid and tubular epithelial cells shape renal innate immunity.
T. Hato, T. M. El-Achkar, and P. C. Dagher (2013)
Am J Physiol Renal Physiol 304, F1243-F1251
   Abstract »    Full Text »    PDF »
Structural Reorganization of the Toll-Like Receptor 8 Dimer Induced by Agonistic Ligands.
H. Tanji, U. Ohto, T. Shibata, K. Miyake, and T. Shimizu (2013)
Science 339, 1426-1429
   Abstract »    Full Text »    PDF »
Molecular Pathways: Toll-like Receptors in the Tumor Microenvironment--Poor Prognosis or New Therapeutic Opportunity.
L. A. Ridnour, R. Y. S. Cheng, C. H. Switzer, J. L. Heinecke, S. Ambs, S. Glynn, H. A. Young, G. Trinchieri, and D. A. Wink (2013)
Clin. Cancer Res. 19, 1340-1346
   Abstract »    Full Text »    PDF »
Inhibition of Toll-Like Receptor-Mediated Inflammation In Vitro and In Vivo by a Novel Benzoxaborole.
C. Dong, H. Sexton, A. Gertrudes, T. Akama, S. Martin, C. Virtucio, C.-W. Chen, X. Fan, A. Wu, W. Bu, et al. (2013)
J. Pharmacol. Exp. Ther. 344, 436-446
   Abstract »    Full Text »    PDF »
Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1.
J. Donovan, M. Dufner, and A. Korennykh (2013)
PNAS 110, 1652-1657
   Abstract »    Full Text »    PDF »
Cleaved/Associated TLR3 Represents the Primary Form of the Signaling Receptor.
F. Toscano, Y. Estornes, F. Virard, A. Garcia-Cattaneo, A. Pierrot, B. Vanbervliet, M. Bonnin, M. J. Ciancanelli, S.-Y. Zhang, K. Funami, et al. (2013)
J. Immunol. 190, 764-773
   Abstract »    Full Text »    PDF »
CD11b/CD18 (Mac-1) Is a Novel Surface Receptor for Extracellular Double-Stranded RNA To Mediate Cellular Inflammatory Responses.
H. Zhou, J. Liao, J. Aloor, H. Nie, B. C. Wilson, M. B. Fessler, H.-M. Gao, and J.-S. Hong (2013)
J. Immunol. 190, 115-125
   Abstract »    Full Text »    PDF »
Proteolytic Processing Regulates Toll-like Receptor 3 Stability and Endosomal Localization.
R. Qi, D. Singh, and C. C. Kao (2012)
J. Biol. Chem. 287, 32617-32629
   Abstract »    Full Text »    PDF »
Leucine-rich Repeat 11 of Toll-like Receptor 9 Can Tightly Bind to CpG-containing Oligodeoxynucleotides, and the Positively Charged Residues Are Critical for the High Affinity.
X. Pan, J. Yue, G. Ding, B. Li, X. Liu, X. Zheng, M. Yu, J. Li, W. Jiang, C. Wu, et al. (2012)
J. Biol. Chem. 287, 30596-30609
   Abstract »    Full Text »    PDF »
Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase.
R. Vaughan, B. Fan, J.-S. You, and C. C. Kao (2012)
RNA 18, 1541-1552
   Abstract »    Full Text »    PDF »
Cleavage of Toll-like receptor 3 by cathepsins B and H is essential for signaling.
A. Garcia-Cattaneo, F.-X. Gobert, M. Muller, F. Toscano, M. Flores, A. Lescure, E. Del Nery, and P. Benaroch (2012)
PNAS 109, 9053-9058
   Abstract »    Full Text »    PDF »
Structural Insights into the Assembly of Large Oligomeric Signalosomes in the Toll-Like Receptor-Interleukin-1 Receptor Superfamily.
R. Ferrao, J. Li, E. Bergamin, and H. Wu (2012)
Science Signaling 5, re3
   Abstract »    Full Text »    PDF »
RNA Synthesis by the Brome Mosaic Virus RNA-Dependent RNA Polymerase in Human Cells Reveals Requirements for De Novo Initiation and Protein-Protein Interaction.
C. V. Subba-Reddy, B. Tragesser, Z. Xu, B. Stein, C. T. Ranjith-Kumar, and C. C. Kao (2012)
J. Virol. 86, 4317-4327
   Abstract »    Full Text »    PDF »
Mice, men and the relatives: cross-species studies underpin innate immunity.
C. E. Bryant and T. P. Monie (2012)
Open Bio 2, 120015
   Abstract »    Full Text »    PDF »
The Structure of the TLR5-Flagellin Complex: A New Mode of Pathogen Detection, Conserved Receptor Dimerization for Signaling.
J. Lu and P. D. Sun (2012)
Science Signaling 5, pe11
   Abstract »    Full Text »    PDF »
Sensing of RNA Viruses: a Review of Innate Immune Receptors Involved in Recognizing RNA Virus Invasion.
S. Jensen and A. R. Thomsen (2012)
J. Virol. 86, 2900-2910
   Abstract »    Full Text »    PDF »
A TRIF-Independent Branch of TLR3 Signaling.
M. Yamashita, S. Chattopadhyay, V. Fensterl, Y. Zhang, and G. C. Sen (2012)
J. Immunol. 188, 2825-2833
   Abstract »    Full Text »    PDF »
Probing the Arabidopsis Flagellin Receptor: FLS2-FLS2 Association and the Contributions of Specific Domains to Signaling Function.
W. Sun, Y. Cao, K. Jansen Labby, P. Bittel, T. Boller, and A. F. Bent (2012)
PLANT CELL 24, 1096-1113
   Abstract »    Full Text »    PDF »
Structural Basis of TLR5-Flagellin Recognition and Signaling.
S.-i. Yoon, O. Kurnasov, V. Natarajan, M. Hong, A. V. Gudkov, A. L. Osterman, and I. A. Wilson (2012)
Science 335, 859-864
   Abstract »    Full Text »    PDF »
DNA binding to proteolytically activated TLR9 is sequence-independent and enhanced by DNA curvature.
Y. Li, I. C. Berke, and Y. Modis (2012)
EMBO J. 31, 919-931
   Abstract »    Full Text »    PDF »
Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis.
F. G. Goh and K. S. Midwood (2012)
Rheumatology 51, 7-23
   Abstract »    Full Text »    PDF »
Activation of Endothelial Toll-Like Receptor 3 Impairs Endothelial Function.
S. Zimmer, M. Steinmetz, T. Asdonk, I. Motz, C. Coch, E. Hartmann, W. Barchet, S. Wassmann, G. Hartmann, and G. Nickenig (2011)
Circ. Res. 108, 1358-1366
   Abstract »    Full Text »    PDF »
Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells.
C. Russo, I. Cornella-Taracido, L. Galli-Stampino, R. Jain, E. Harrington, Y. Isome, S. Tavarini, C. Sammicheli, S. Nuti, M. L. Mbow, et al. (2011)
Blood 117, 5683-5691
   Abstract »    Full Text »    PDF »
Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase.
S. E. Ewald, A. Engel, J. Lee, M. Wang, M. Bogyo, and G. M. Barton (2011)
J. Exp. Med. 208, 643-651
   Abstract »    Full Text »    PDF »
A Point Mutation in the Amino Terminus of TLR7 Abolishes Signaling without Affecting Ligand Binding.
C. Iavarone, K. Ramsauer, A. V. Kubarenko, J. C. Debasitis, I. Leykin, A. N. R. Weber, O. M. Siggs, B. Beutler, P. Zhang, G. Otten, et al. (2011)
J. Immunol. 186, 4213-4222
   Abstract »    Full Text »    PDF »
Cleavage and activation of a Toll-like receptor by microbial proteases.
M. R. de Zoete, L. I. Bouwman, A. M. Keestra, and J. P. M. van Putten (2011)
PNAS 108, 4968-4973
   Abstract »    Full Text »    PDF »
A Functional Toll-Like Receptor 3 Gene (TLR3) May Be a Risk Factor for Tick-borne Encephalitis Virus (TBEV) Infection.
E. Kindberg, S. Vene, A. Mickiene, A. Lundkvist, L. Lindquist, and L. Svensson (2011)
The Journal of Infectious Disease 203, 523-528
   Abstract »    Full Text »    PDF »
TLR3-Specific Double-Stranded RNA Oligonucleotide Adjuvants Induce Dendritic Cell Cross-Presentation, CTL Responses, and Antiviral Protection.
I. Jelinek, J. N. Leonard, G. E. Price, K. N. Brown, A. Meyer-Manlapat, P. K. Goldsmith, Y. Wang, D. Venzon, S. L. Epstein, and D. M. Segal (2011)
J. Immunol. 186, 2422-2429
   Abstract »    Full Text »    PDF »
CD14 is a coreceptor of Toll-like receptors 7 and 9.
C. L. Baumann, I. M. Aspalter, O. Sharif, A. Pichlmair, S. Bluml, F. Grebien, M. Bruckner, P. Pasierbek, K. Aumayr, M. Planyavsky, et al. (2010)
J. Exp. Med. 207, 2689-2701
   Abstract »    Full Text »    PDF »
A Naturally Occurring Variant in Human TLR9, P99L, Is Associated with Loss of CpG Oligonucleotide Responsiveness.
A. V. Kubarenko, S. Ranjan, A. Rautanen, T. C. Mills, S. Wong, F. Vannberg, M. Neumaier, I. Bekeredjian-Ding, A. V. S. Hill, P. Ahmad-Nejad, et al. (2010)
J. Biol. Chem. 285, 36486-36494
   Abstract »    Full Text »    PDF »
Dimerization of Toll-like Receptor 3 (TLR3) Is Required for Ligand Binding.
Y. Wang, L. Liu, D. R. Davies, and D. M. Segal (2010)
J. Biol. Chem. 285, 36836-36841
   Abstract »    Full Text »    PDF »
Secretion of the Human Toll-like Receptor 3 Ectodomain Is Affected by Single Nucleotide Polymorphisms and Regulated by Unc93b1.
R. Qi, S. Hoose, J. Schreiter, K. V. Sawant, R. Lamb, C. T. Ranjith-Kumar, J. Mills, L. S. Mateo, J. L. Jordan, and C. C. Kao (2010)
J. Biol. Chem. 285, 36635-36644
   Abstract »    Full Text »    PDF »
Adaptation and Constraint at Toll-Like Receptors in Primates.
G. Wlasiuk and M. W. Nachman (2010)
Mol. Biol. Evol. 27, 2172-2186
   Abstract »    Full Text »    PDF »
Induction and Evasion of Innate Antiviral Responses by Hepatitis C Virus.
S. M. Lemon (2010)
J. Biol. Chem. 285, 22741-22747
   Abstract »    Full Text »    PDF »
A Role for Toll-like Receptor 3 Variants in Host Susceptibility to Enteroviral Myocarditis and Dilated Cardiomyopathy.
C. Gorbea, K. A. Makar, M. Pauschinger, G. Pratt, J. L. F. Bersola, J. Varela, R. M. David, L. Banks, C.-H. Huang, H. Li, et al. (2010)
J. Biol. Chem. 285, 23208-23223
   Abstract »    Full Text »    PDF »
Structural basis for solute transport, nucleotide regulation, and immunological recognition of Neisseria meningitidis PorB.
M. Tanabe, C. M. Nimigean, and T. M. Iverson (2010)
PNAS 107, 6811-6816
   Abstract »    Full Text »    PDF »
Rapid Heteromerization and Phosphorylation of Ligand-activated Plant Transmembrane Receptors and Their Associated Kinase BAK1.
B. Schulze, T. Mentzel, A. K. Jehle, K. Mueller, S. Beeler, T. Boller, G. Felix, and D. Chinchilla (2010)
J. Biol. Chem. 285, 9444-9451
   Abstract »    Full Text »    PDF »
Sulforaphane Suppresses Oligomerization of TLR4 in a Thiol-Dependent Manner.
H. S. Youn, Y. S. Kim, Z. Y. Park, S. Y. Kim, N. Y. Choi, S. M. Joung, J. A. Seo, K.-M. Lim, M.-K. Kwak, D. H. Hwang, et al. (2010)
J. Immunol. 184, 411-419
   Abstract »    Full Text »    PDF »
Toll-like Receptor Polymorphisms and Age-Related Macular Degeneration: Replication in Three Case-Control Samples.
Y. Cho, J. J. Wang, E. Y. Chew, F. L. Ferris III, P. Mitchell, C.-C. Chan, and J. Tuo (2009)
Invest. Ophthalmol. Vis. Sci. 50, 5614-5618
   Abstract »    Full Text »    PDF »
Long Double-Stranded RNA Induces an Antiviral Response Independent of IFN Regulatory Factor 3, IFN-{beta} Promoter Stimulator 1, and IFN.
S. J. DeWitte-Orr, D. R. Mehta, S. E. Collins, M. S. Suthar, M. Gale Jr., and K. L. Mossman (2009)
J. Immunol. 183, 6545-6553
   Abstract »    Full Text »    PDF »
N. Sasaki, M. Ogasawara, T. Sekiguchi, S. Kusumoto, and H. Satake (2009)
J. Biol. Chem. 284, 27336-27343
   Abstract »    Full Text »    PDF »
Toll-Like Receptor 3 Mediates Establishment of an Antiviral State against Hepatitis C Virus in Hepatoma Cells.
N. Wang, Y. Liang, S. Devaraj, J. Wang, S. M. Lemon, and K. Li (2009)
J. Virol. 83, 9824-9834
   Abstract »    Full Text »    PDF »
Identification of an N-Terminal Recognition Site in TLR9 That Contributes to CpG-DNA-Mediated Receptor Activation.
M. E. Peter, A. V. Kubarenko, A. N. R. Weber, and A. H. Dalpke (2009)
J. Immunol. 182, 7690-7697
   Abstract »    Full Text »    PDF »
Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer.
L. A. J. O'Neill, C. E. Bryant, and S. L. Doyle (2009)
Pharmacol. Rev. 61, 177-197
   Abstract »    Full Text »    PDF »
Essential Roles of Hydrophobic Residues in Both MD-2 and Toll-like Receptor 4 in Activation by Endotoxin.
N. Resman, J. Vasl, A. Oblak, P. Pristovsek, T. L. Gioannini, J. P. Weiss, and R. Jerala (2009)
J. Biol. Chem. 284, 15052-15060
   Abstract »    Full Text »    PDF »
The RIG-I-like Receptor LGP2 Recognizes the Termini of Double-stranded RNA.
X. Li, C. T. Ranjith-Kumar, M. T. Brooks, S. Dharmaiah, A. B. Herr, C. Kao, and P. Li (2009)
J. Biol. Chem. 284, 13881-13891
   Abstract »    Full Text »    PDF »
Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation.
D. Piccioli, C. Sammicheli, S. Tavarini, S. Nuti, E. Frigimelica, A. G.O. Manetti, A. Nuccitelli, S. Aprea, S. Valentini, E. Borgogni, et al. (2009)
Blood 113, 4232-4239
   Abstract »    Full Text »    PDF »
Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth.
W. G. Cho, R. J. C. Albuquerque, M. E. Kleinman, V. Tarallo, A. Greco, M. Nozaki, M. G. Green, J. Z. Baffi, B. K. Ambati, M. De Falco, et al. (2009)
PNAS 106, 7137-7142
   Abstract »    Full Text »    PDF »
Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses.
T. H. Mogensen (2009)
Clin. Microbiol. Rev. 22, 240-273
   Abstract »    Full Text »    PDF »
Agonist and Antagonist Recognition by RIG-I, a Cytoplasmic Innate Immunity Receptor.
C. T. Ranjith-Kumar, A. Murali, W. Dong, D. Srisathiyanarayanan, R. Vaughan, J. Ortiz-Alacantara, K. Bhardwaj, X. Li, P. Li, and C. C. Kao (2009)
J. Biol. Chem. 284, 1155-1165
   Abstract »    Full Text »    PDF »
Targeting Poly(I:C) to the TLR3-Independent Pathway Boosts Effector CD8 T Cell Differentiation through IFN-{alpha}/{beta}.
S. M. Ngoi, M. G. Tovey, and A. T. Vella (2008)
J. Immunol. 181, 7670-7680
   Abstract »    Full Text »    PDF »
Vaccinia Virus Subverts a Mitochondrial Antiviral Signaling Protein-Dependent Innate Immune Response in Keratinocytes through Its Double-Stranded RNA Binding Protein, E3.
L. Deng, P. Dai, T. Parikh, H. Cao, V. Bhoj, Q. Sun, Z. Chen, T. Merghoub, A. Houghton, and S. Shuman (2008)
J. Virol. 82, 10735-10746
   Abstract »    Full Text »    PDF »
Antigen Recognition by Variable Lymphocyte Receptors.
B. W. Han, B. R. Herrin, M. D. Cooper, and I. A. Wilson (2008)
Science 321, 1834-1837
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882