Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 320 (5876): 667-670

Copyright © 2008 by the American Association for the Advancement of Science

Phosphorylation by p38 MAPK as an Alternative Pathway for GSK3β Inactivation

Tina M. Thornton,1 Gustavo Pedraza-Alva,1* Bin Deng,2,3 C. David Wood,1 Alexander Aronshtam,1 James L. Clements,4 Guadalupe Sabio,5 Roger J. Davis,5 Dwight E. Matthews,1,3 Bradley Doble,6 Mercedes Rincon1{dagger}

Abstract: Glycogen synthase kinase 3β (GSK3β) is involved in metabolism, neurodegeneration, and cancer. Inhibition of GSK3β activity is the primary mechanism that regulates this widely expressed active kinase. Although the protein kinase Akt inhibits GSK3β by phosphorylation at the N terminus, preventing Akt-mediated phosphorylation does not affect the cell-survival pathway activated through the GSK3β substrate β-catenin. Here, we show that p38 mitogen-activated protein kinase (MAPK) also inactivates GSK3β by direct phosphorylation at its C terminus, and this inactivation can lead to an accumulation of β-catenin. p38 MAPK–mediated phosphorylation of GSK3β occurs primarily in the brain and thymocytes. Activation of β-catenin–mediated signaling through GSK3β inhibition provides a potential mechanism for p38 MAPK–mediated survival in specific tissues.

1 Department of Medicine/Immunobiology Program, University of Vermont, Burlington, VT 05405–0068, USA.
2 Department of Biology, University of Vermont, Burlington, VT 05405–0068, USA.
3 Department of Chemistry, University of Vermont, Burlington, VT 05405–0068, USA.
4 Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
5 Program in Molecular Medicine, University of Massachusetts, Worcester, MA 01605, USA.
6 McMaster Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario, L8N 3Z5, Canada.

* Present address: Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, 62210, México.

{dagger} To whom correspondence should be addressed. E-mail: mrincon{at}uvm.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
IL-13 Orchestrates Resolution of Chronic Intestinal Inflammation via Phosphorylation of Glycogen Synthase Kinase-3{beta}.
S. Fichtner-Feigl, R. Kesselring, M. Martin, F. Obermeier, P. Ruemmele, A. Kitani, S. M. Brunner, M. Haimerl, E. K. Geissler, W. Strober, et al. (2014)
J. Immunol. 192, 3969-3980
   Abstract »    Full Text »    PDF »
GSK-3 - at the crossroads of cell death and survival.
U. Maurer, F. Preiss, P. Brauns-Schubert, L. Schlicher, and C. Charvet (2014)
J. Cell Sci. 127, 1369-1378
   Abstract »    Full Text »    PDF »
Mutations in MAP3K1 tilt the balance from SOX9/FGF9 to WNT/{beta}-catenin signaling.
J. Loke, A. Pearlman, O. Radi, O. Zuffardi, U. Giussani, R. Pallotta, G. Camerino, and H. Ostrer (2014)
Hum. Mol. Genet. 23, 1073-1083
   Abstract »    Full Text »    PDF »
FANCA and FANCC modulate TLR and p38 MAPK-dependent expression of IL-1{beta} in macrophages.
M. R. Garbati, L. E. Hays, W. Keeble, J. E. Yates, R. K. Rathbun, and G. C. Bagby (2013)
Blood 122, 3197-3205
   Abstract »    Full Text »    PDF »
Estrogen Alters the Splicing of Type 1 Corticotropin-Releasing Hormone Receptor in Breast Cancer Cells.
S. Lal, A. Allan, D. Markovic, R. Walker, J. Macartney, N. Europe-Finner, A. Tyson-Capper, and D. K. Grammatopoulos (2013)
Science Signaling 6, ra53
   Abstract »    Full Text »    PDF »
Store-operated Ca2+ Entry (SOCE) Induced by Protease-activated Receptor-1 Mediates STIM1 Protein Phosphorylation to Inhibit SOCE in Endothelial Cells through AMP-activated Protein Kinase and p38{beta} Mitogen-activated Protein Kinase.
P. C. Sundivakkam, V. Natarajan, A. B. Malik, and C. Tiruppathi (2013)
J. Biol. Chem. 288, 17030-17041
   Abstract »    Full Text »    PDF »
Deacetylated GM3 Promotes uPAR-Associated Membrane Molecular Complex to Activate p38 MAPK in Metastatic Melanoma.
Q. Yan, D. Q. Bach, N. Gatla, P. Sun, J.-W. Liu, J.-Y. Lu, A. S. Paller, and X.-Q. Wang (2013)
Mol. Cancer Res. 11, 665-675
   Abstract »    Full Text »    PDF »
Inhibitory phosphorylation of GSK-3{beta} by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP).
X. Zhou, H. Wang, M. B. Burg, and J. D. Ferraris (2013)
Am J Physiol Renal Physiol 304, F908-F917
   Abstract »    Full Text »    PDF »
Association of {beta}-catenin with P-Smad3 but not LEF-1 dissociates in vitro profibrotic from anti-inflammatory effects of TGF-{beta}1.
X. Tian, J. Zhang, T. K. Tan, J. G. Lyons, H. Zhao, B. Niu, S. R. Lee, T. Tsatralis, Y. Zhao, Y. Wang, et al. (2013)
J. Cell Sci. 126, 67-76
   Abstract »    Full Text »    PDF »
Rit-mediated Stress Resistance Involves a p38-Mitogen- and Stress-activated Protein Kinase 1 (MSK1)-dependent cAMP Response Element-binding Protein (CREB) Activation Cascade.
G.-X. Shi, W. Cai, and D. A. Andres (2012)
J. Biol. Chem. 287, 39859-39868
   Abstract »    Full Text »    PDF »
Rit GTPase Signaling Promotes Immature Hippocampal Neuronal Survival.
W. Cai, S. W. Carlson, J. M. Brelsfoard, C. E. Mannon, C. L. Moncman, K. E. Saatman, and D. A. Andres (2012)
J. Neurosci. 32, 9887-9897
   Abstract »    Full Text »    PDF »
CXCR6 Upregulation Contributes to a Proinflammatory Tumor Microenvironment That Drives Metastasis and Poor Patient Outcomes in Hepatocellular Carcinoma.
Q. Gao, Y.-J. Zhao, X.-Y. Wang, S.-J. Qiu, Y.-H. Shi, J. Sun, Y. Yi, J.-Y. Shi, G.-M. Shi, Z.-B. Ding, et al. (2012)
Cancer Res. 72, 3546-3556
   Abstract »    Full Text »    PDF »
Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity.
Z.-Q. Wu, T. Brabletz, E. Fearon, A. L. Willis, C. Y. Hu, X.-Y. Li, and S. J. Weiss (2012)
PNAS 109, 11312-11317
   Abstract »    Full Text »    PDF »
Site-specific Phosphorylation Protects Glycogen Synthase Kinase-3{beta} from Calpain-mediated Truncation of Its N and C Termini.
S. Ma, S. Liu, Q. Huang, B. Xie, B. Lai, C. Wang, B. Song, and M. Li (2012)
J. Biol. Chem. 287, 22521-22532
   Abstract »    Full Text »    PDF »
The many faces and functions of {beta}-catenin.
T. Valenta, G. Hausmann, and K. Basler (2012)
EMBO J. 31, 2714-2736
   Abstract »    Full Text »    PDF »
APC and Smad7 link TGF{beta} type I receptors to the microtubule system to promote cell migration.
M. Ekman, Y. Mu, S. Y. Lee, S. Edlund, T. Kozakai, N. Thakur, H. Tran, J. Qian, J. Groeden, C.-H. Heldin, et al. (2012)
Mol. Biol. Cell 23, 2109-2121
   Abstract »    Full Text »    PDF »
Signal Transducer and Activator of Transcription 3 (STAT3) Protein Suppresses Adenoma-to-carcinoma Transition in Apcmin/+ Mice via Regulation of Snail-1 (SNAI) Protein Stability.
J. Lee, J. C. K. Kim, S.-E. Lee, C. Quinley, H. Kim, S. Herdman, M. Corr, and E. Raz (2012)
J. Biol. Chem. 287, 18182-18189
   Abstract »    Full Text »    PDF »
The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis.
T. Miura and M. Tanno (2012)
Cardiovasc Res 94, 181-189
   Abstract »    Full Text »    PDF »
Recognition-dependent Signaling Events in Response to Apoptotic Targets Inhibit Epithelial Cell Viability by Multiple Mechanisms: IMPLICATIONS FOR NON-IMMUNE TISSUE HOMEOSTASIS.
V. A. Patel, L. Feng, D. J. Lee, D. Massenburg, G. Pattabiraman, A. Antoni, J. H. Schwartz, W. Lieberthal, J. Rauch, D. S. Ucker, et al. (2012)
J. Biol. Chem. 287, 13761-13777
   Abstract »    Full Text »    PDF »
Prolyl Isomerase Pin1 Promotes Amyloid Precursor Protein (APP) Turnover by Inhibiting Glycogen Synthase Kinase-3{beta} (GSK3{beta}) Activity: NOVEL MECHANISM FOR Pin1 TO PROTECT AGAINST ALZHEIMER DISEASE.
S. L. Ma, L. Pastorino, X. Z. Zhou, and K. P. Lu (2012)
J. Biol. Chem. 287, 6969-6973
   Abstract »    Full Text »    PDF »
Adiponectin Stimulates Proliferation of Adult Hippocampal Neural Stem/Progenitor Cells through Activation of p38 Mitogen-activated Protein Kinase (p38MAPK)/Glycogen Synthase Kinase 3{beta} (GSK-3{beta})/{beta}-Catenin Signaling Cascade.
D. Zhang, M. Guo, W. Zhang, and X.-Y. Lu (2011)
J. Biol. Chem. 286, 44913-44920
   Abstract »    Full Text »    PDF »
GSK3-mediated instability of tubulin polymers is responsible for the failure of immature CD4+CD8+ thymocytes to polarize their MTOC in response to TCR stimulation.
N. R. Cunningham, E. M. Hinchcliff, V. I. Kutyavin, T. Beck, W. A. Reid, and J. A. Punt (2011)
Int. Immunol. 23, 693-700
   Abstract »    Full Text »    PDF »
An evolutionarily conserved Rit GTPase-p38 MAPK signaling pathway mediates oxidative stress resistance.
W. Cai, J. L. Rudolph, S. M. W. Harrison, L. Jin, A. L. Frantz, D. A. Harrison, and D. A. Andres (2011)
Mol. Biol. Cell 22, 3231-3241
   Abstract »    Full Text »    PDF »
Influence of leucine on protein metabolism, phosphokinase expression, and cell proliferation in human duodenum1,3.
M. Coeffier, S. Claeyssens, M. Bensifi, S. Lecleire, N. Boukhettala, B. Maurer, N. Donnadieu, A. Lavoinne, A.-F. Cailleux, and P. Dechelotte (2011)
Am J Clin Nutr 93, 1255-1262
   Abstract »    Full Text »    PDF »
A Rit GTPase-p38 Mitogen-Activated Protein Kinase Survival Pathway Confers Resistance to Cellular Stress.
G.-X. Shi, L. Jin, and D. A. Andres (2011)
Mol. Cell. Biol. 31, 1938-1948
   Abstract »    Full Text »    PDF »
Translational Control of NKT Cell Cytokine Production by p38 MAPK.
V. K. Nagaleekar, G. Sabio, I. Aktan, A. Chant, I. W. Howe, T. M. Thornton, P. J. Benoit, R. J. Davis, M. Rincon, and J. E. Boyson (2011)
J. Immunol. 186, 4140-4146
   Abstract »    Full Text »    PDF »
Raf Kinase Inhibitor Protein RKIP Enhances Signaling by Glycogen Synthase Kinase-3{beta}.
F. Al-Mulla, M. S. Bitar, M. Al-Maghrebi, A. I. Behbehani, W. Al-Ali, O. Rath, B. Doyle, K. Y. Tan, A. Pitt, and W. Kolch (2011)
Cancer Res. 71, 1334-1343
   Abstract »    Full Text »    PDF »
BMP promotes motility and represses growth of smooth muscle cells by activation of tandem Wnt pathways.
V. A. de Jesus Perez, Z. Ali, T.-P. Alastalo, F. Ikeno, H. Sawada, Y.-J. Lai, T. Kleisli, E. Spiekerkoetter, X. Qu, L. H. Rubinos, et al. (2011)
J. Cell Biol. 192, 171-188
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinases Promote WNT/{beta}-Catenin Signaling via Phosphorylation of LRP6.
I. Cervenka, J. Wolf, J. Masek, P. Krejci, W. R. Wilcox, A. Kozubik, G. Schulte, J. S. Gutkind, and V. Bryja (2011)
Mol. Cell. Biol. 31, 179-189
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein Kinase Signaling in the Heart: Angels Versus Demons in a Heart-Breaking Tale.
B. A. Rose, T. Force, and Y. Wang (2010)
Physiol Rev 90, 1507-1546
   Abstract »    Full Text »    PDF »
Evolutionarily Conserved Role of Calcineurin in Phosphodegron-Dependent Degradation of Phosphodiesterase 4D.
H. Zhu, H. Y. Suk, R. Y. L. Yu, D. Brancho, O. Olabisi, T. T. C. Yang, X. Yang, J. Zhang, M. Moussaif, J. L. Durand, et al. (2010)
Mol. Cell. Biol. 30, 4379-4390
   Abstract »    Full Text »    PDF »
Plasminogen Activator Inhibitor-1 Is a Transcriptional Target of the Canonical Pathway of Wnt/{beta}-Catenin Signaling.
W. He, R. Tan, C. Dai, Y. Li, D. Wang, S. Hao, M. Kahn, and Y. Liu (2010)
J. Biol. Chem. 285, 24665-24675
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase-3{beta} Regulates Post-Myocardial Infarction Remodeling and Stress-Induced Cardiomyocyte Proliferation In Vivo.
K. C. Woulfe, E. Gao, H. Lal, D. Harris, Q. Fan, R. Vagnozzi, M. DeCaul, X. Shang, S. Patel, J. R. Woodgett, et al. (2010)
Circ. Res. 106, 1635-1645
   Abstract »    Full Text »    PDF »
A Noncatalytic Domain of Glycogen Synthase Kinase-3 (GSK-3) Is Essential for Activity.
J. L. Buescher and C. J. Phiel (2010)
J. Biol. Chem. 285, 7957-7963
   Abstract »    Full Text »    PDF »
New Insights into Epithelial-Mesenchymal Transition in Kidney Fibrosis.
Y. Liu (2010)
J. Am. Soc. Nephrol. 21, 212-222
   Abstract »    Full Text »    PDF »
Selective Activation of the p38 MAPK Pathway by Synthetic Monophosphoryl Lipid A.
C. Cekic, C. R. Casella, C. A. Eaves, A. Matsuzawa, H. Ichijo, and T. C. Mitchell (2009)
J. Biol. Chem. 284, 31982-31991
   Abstract »    Full Text »    PDF »
{beta}-Catenin/Tcf Determines the Outcome of Thymic Selection in Response to {alpha}{beta}TCR Signaling.
D. Kovalovsky, Y. Yu, M. Dose, A. Emmanouilidou, T. Konstantinou, K. Germar, K. Aghajani, Z. Guo, M. Mandal, and F. Gounari (2009)
J. Immunol. 183, 3873-3884
   Abstract »    Full Text »    PDF »
Glycogen synthase kinase 3B in bovine oocytes and granulosa cells: possible involvement in meiosis during in vitro maturation.
S. Uzbekova, M. Salhab, C. Perreau, P. Mermillod, and J. Dupont (2009)
Reproduction 138, 235-246
   Abstract »    Full Text »    PDF »
Role of Glycogen Synthase Kinase-3{beta} in Cardioprotection.
M. Juhaszova, D. B. Zorov, Y. Yaniv, H. B. Nuss, S. Wang, and S. J. Sollott (2009)
Circ. Res. 104, 1240-1252
   Abstract »    Full Text »    PDF »
Transducing Neuronal Activity into Dendritic Spine Morphology: New Roles for p38 MAP Kinase and N-cadherin.
H. Sugiura, H. Tanaka, S. Yasuda, T. Takemiya, and K. Yamagata (2009)
Neuroscientist 15, 90-104
   Abstract »    PDF »
Bone morphogenetic protein 2 induces pulmonary angiogenesis via Wnt-{beta}-catenin and Wnt-RhoA-Rac1 pathways.
V. A. de Jesus Perez, T.-P. Alastalo, J. C. Wu, J. D. Axelrod, J. P. Cooke, M. Amieva, and M. Rabinovitch (2009)
J. Cell Biol. 184, 83-99
   Abstract »    Full Text »    PDF »
Distinct roles of GSK-3{alpha} and GSK-3{beta} phosphorylation in the heart under pressure overload.
T. Matsuda, P. Zhai, Y. Maejima, C. Hong, S. Gao, B. Tian, K. Goto, H. Takagi, M. Tamamori-Adachi, S. Kitajima, et al. (2008)
PNAS 105, 20900-20905
   Abstract »    Full Text »    PDF »
Laforin Negatively Regulates Cell Cycle Progression through Glycogen Synthase Kinase 3{beta}-Dependent Mechanisms.
R. Liu, L. Wang, C. Chen, Y. Liu, P. Zhou, Y. Wang, X. Wang, J. Turnbull, B. A. Minassian, Y. Liu, et al. (2008)
Mol. Cell. Biol. 28, 7236-7244
   Abstract »    Full Text »    PDF »
c-Jun N-terminal kinase 1 interacts with and negatively regulates Wnt/{beta}-catenin signaling through GSK3{beta} pathway.
D. Hu, W. Fang, A. Han, L. Gallagher, R. J. Davis, B. Xiong, and W. Yang (2008)
Carcinogenesis 29, 2317-2324
   Abstract »    Full Text »    PDF »
p38 mitogen-activated protein kinase regulates canonical Wnt-{beta}-catenin signaling by inactivation of GSK3{beta}.
R. K. Bikkavilli, M. E. Feigin, and C. C. Malbon (2008)
J. Cell Sci. 121, 3598-3607
   Abstract »    Full Text »    PDF »
Mitogen-Activated Protein (MAP) Kinase/MAP Kinase Phosphatase Regulation: Roles in Cell Growth, Death, and Cancer.
T. Boutros, E. Chevet, and P. Metrakos (2008)
Pharmacol. Rev. 60, 261-310
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882