Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 320 (5878): 942-945

Copyright © 2008 by the American Association for the Advancement of Science

Cell Identity Mediates the Response of Arabidopsis Roots to Abiotic Stress

José R. Dinneny,1*{dagger} Terri A. Long,1* Jean Y. Wang,1 Jee W. Jung,1 Daniel Mace,2 Solomon Pointer,1 Christa Barron,3 Siobhan M. Brady,1 John Schiefelbein,3 Philip N. Benfey1,2{ddagger}

Abstract: Little is known about the way developmental cues affect how cells interpret their environment. We characterized the transcriptional response to high salinity of different cell layers and developmental stages of the Arabidopsis root and found that transcriptional responses are highly constrained by developmental parameters. These transcriptional changes lead to the differential regulation of specific biological functions in subsets of cell layers, several of which correspond to observable physiological changes. We showed that known stress pathways primarily control semiubiquitous responses and used mutants that disrupt epidermal patterning to reveal cell-layer–specific and inter–cell-layer effects. By performing a similar analysis using iron deprivation, we identified common cell-type–specific stress responses and revealed the crucial role the environment plays in defining the transcriptional outcome of cell-fate decisions.

1 Department of Biology, Duke University, Durham, NC 27708, USA.
2 Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA.
3 Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

* These authors contributed equally to this work.

{dagger} Present address: Temasek Lifesciences Laboratory, National University of Singapore, Singapore 117604, Singapore.

{ddagger} To whom correspondence should be addressed. E-mail: philip.benfey{at}duke.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Feruloyl-CoA 6'-Hydroxylase1-Dependent Coumarins Mediate Iron Acquisition from Alkaline Substrates in Arabidopsis.
N. B. Schmid, R. F. H. Giehl, S. Doll, H.-P. Mock, N. Strehmel, D. Scheel, X. Kong, R. C. Hider, and N. von Wiren (2014)
Plant Physiology 164, 160-172
   Abstract »    Full Text »    PDF »
Root Systems Biology: Integrative Modeling across Scales, from Gene Regulatory Networks to the Rhizosphere.
K. Hill, S. Porco, G. Lobet, S. Zappala, S. Mooney, X. Draye, and M. J. Bennett (2013)
Plant Physiology 163, 1487-1503
   Abstract »    Full Text »    PDF »
Root Transcript Profiling of Two Rorippa Species Reveals Gene Clusters Associated with Extreme Submergence Tolerance.
R. Sasidharan, A. Mustroph, A. Boonman, M. Akman, A. M. H. Ammerlaan, T. Breit, M. E. Schranz, L. A. C. J. Voesenek, and P. H. van Tienderen (2013)
Plant Physiology 163, 1277-1292
   Abstract »    Full Text »    PDF »
Salinity-Induced Calcium Signaling and Root Adaptation in Arabidopsis Require the Calcium Regulatory Protein Annexin1.
A. Laohavisit, S. L. Richards, L. Shabala, C. Chen, R. D. D. R. Colaco, S. M. Swarbreck, E. Shaw, A. Dark, S. Shabala, Z. Shang, et al. (2013)
Plant Physiology 163, 253-262
   Abstract »    Full Text »    PDF »
The Agony of Choice: How Plants Balance Growth and Survival under Water-Limiting Conditions.
H. Claeys and D. Inze (2013)
Plant Physiology 162, 1768-1779
   Abstract »    Full Text »    PDF »
Mutually Exclusive Alterations in Secondary Metabolism Are Critical for the Uptake of Insoluble Iron Compounds by Arabidopsis and Medicago truncatula.
J. Rodriguez-Celma, W.-D. Lin, G.-M. Fu, J. Abadia, A.-F. Lopez-Millan, and W. Schmidt (2013)
Plant Physiology 162, 1473-1485
   Abstract »    Full Text »    PDF »
A Spatio-Temporal Understanding of Growth Regulation during the Salt Stress Response in Arabidopsis.
Y. Geng, R. Wu, C. W. Wee, F. Xie, X. Wei, P. M. Y. Chan, C. Tham, L. Duan, and J. R. Dinneny (2013)
PLANT CELL 25, 2132-2154
   Abstract »    Full Text »    PDF »
Dynamic Transcriptomic Profiles between Tomato and a Wild Relative Reflect Distinct Developmental Architectures.
D. H. Chitwood, J. N. Maloof, and N. R. Sinha (2013)
Plant Physiology 162, 537-552
   Abstract »    Full Text »    PDF »
Peptide Separation Methodologies for In-Depth Proteomics in Arabidopsis.
Y. Fukao, M. Yoshida, R. Kurata, M. Kobayashi, M. Nakanishi, M. Fujiwara, K. Nakajima, and A. Ferjani (2013)
Plant Cell Physiol. 54, 808-815
   Abstract »    Full Text »    PDF »
ETHYLENE RESPONSE FACTOR6 Acts as a Central Regulator of Leaf Growth under Water-Limiting Conditions in Arabidopsis.
M. Dubois, A. Skirycz, H. Claeys, K. Maleux, S. Dhondt, S. De Bodt, R. Vanden Bossche, L. De Milde, T. Yoshizumi, M. Matsui, et al. (2013)
Plant Physiology 162, 319-332
   Abstract »    Full Text »    PDF »
Endodermal ABA Signaling Promotes Lateral Root Quiescence during Salt Stress in Arabidopsis Seedlings.
L. Duan, D. Dietrich, C. H. Ng, P. M. Y. Chan, R. Bhalerao, M. J. Bennett, and J. R. Dinneny (2013)
PLANT CELL 25, 324-341
   Abstract »    Full Text »    PDF »
Loss of Function of Arabidopsis C-Terminal Domain Phosphatase-Like1 Activates Iron Deficiency Responses at the Transcriptional Level.
E. Aksoy, I. S. Jeong, and H. Koiwa (2013)
Plant Physiology 161, 330-345
   Abstract »    Full Text »    PDF »
ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis.
C. Jiang, E. J. Belfield, A. Mithani, A. Visscher, J. Ragoussis, R. Mott, J. A. C. Smith, and N. P. Harberd (2012)
EMBO J. 31, 4359-4370
   Abstract »    Full Text »    PDF »
Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana.
B. M. Waters, S. A. McInturf, and R. J. Stein (2012)
J. Exp. Bot. 63, 5903-5918
   Abstract »    Full Text »    PDF »
Systems Analysis of Plant Functional, Transcriptional, Physical Interaction, and Metabolic Networks.
G. W. Bassel, A. Gaudinier, S. M. Brady, L. Hennig, S. Y. Rhee, and I. De Smet (2012)
PLANT CELL 24, 3859-3875
   Abstract »    Full Text »    PDF »
Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage.
E. I. Urzica, D. Casero, H. Yamasaki, S. I. Hsieh, L. N. Adler, S. J. Karpowicz, C. E. Blaby-Haas, S. G. Clarke, J. A. Loo, M. Pellegrini, et al. (2012)
PLANT CELL 24, 3921-3948
   Abstract »    Full Text »    PDF »
Comparative Transcriptomic Analysis of Salt Adaptation in Roots of Contrasting Medicago truncatula Genotypes.
O. Zahaf, S. Blanchet, A. de Zelicourt, B. Alunni, J. Plet, C. Laffont, L. de Lorenzo, S. Imbeaud, J.-L. Ichante, A. Diet, et al. (2012)
Mol Plant 5, 1068-1081
   Abstract »    Full Text »    PDF »
Transcriptional profiling analysis in Populus yunnanensis provides insights into molecular mechanisms of sexual differences in salinity tolerance.
H. Jiang, S. Peng, S. Zhang, X. Li, H. Korpelainen, and C. Li (2012)
J. Exp. Bot. 63, 3709-3726
   Abstract »    Full Text »    PDF »
Tackling Drought Stress: RECEPTOR-LIKE KINASES Present New Approaches.
A. Marshall, R. B. Aalen, D. Audenaert, T. Beeckman, M. R. Broadley, M. A. Butenko, A. I. Cano-Delgado, S. de Vries, T. Dresselhaus, G. Felix, et al. (2012)
PLANT CELL 24, 2262-2278
   Abstract »    Full Text »    PDF »
The protein expression landscape of the Arabidopsis root.
J. J. Petricka, M. A. Schauer, M. Megraw, N. W. Breakfield, J. W. Thompson, S. Georgiev, E. J. Soderblom, U. Ohler, M. A. Moseley, U. Grossniklaus, et al. (2012)
PNAS 109, 6811-6818
   Abstract »    Full Text »    PDF »
Quantitative Phosphoproteome Profiling of Iron-Deficient Arabidopsis Roots.
P. Lan, W. Li, T.-N. Wen, and W. Schmidt (2012)
Plant Physiology 159, 403-417
   Abstract »    Full Text »    PDF »
Arabidopsis Annexin1 Mediates the Radical-Activated Plasma Membrane Ca2+- and K+-Permeable Conductance in Root Cells.
A. Laohavisit, Z. Shang, L. Rubio, T. A. Cuin, A.-A. Very, A. Wang, J. C. Mortimer, N. Macpherson, K. M. Coxon, N. H. Battey, et al. (2012)
PLANT CELL 24, 1522-1533
   Abstract »    Full Text »    PDF »
Elevated Nicotianamine Levels in Arabidopsis halleri Roots Play a Key Role in Zinc Hyperaccumulation.
U. Deinlein, M. Weber, H. Schmidt, S. Rensch, A. Trampczynska, T. H. Hansen, S. Husted, J. K. Schjoerring, I. N. Talke, U. Kramer, et al. (2012)
PLANT CELL 24, 708-723
   Abstract »    Full Text »    PDF »
Vacuolar Nicotianamine Has Critical and Distinct Roles under Iron Deficiency and for Zinc Sequestration in Arabidopsis.
M. J. Haydon, M. Kawachi, M. Wirtz, S. Hillmer, R. Hell, and U. Kramer (2012)
PLANT CELL 24, 724-737
   Abstract »    Full Text »    PDF »
Toward a Systems Analysis of the Root.
P. N. Benfey (2012)
Cold Spring Harb Symp Quant Biol 77, 91-96
   Abstract »    Full Text »    PDF »
Fitting into the Harsh Reality: Regulation of Iron-deficiency Responses in Dicotyledonous Plants.
R. Ivanov, T. Brumbarova, and P. Bauer (2012)
Mol Plant 5, 27-42
   Abstract »    Full Text »    PDF »
Use of natural variation reveals core genes in the transcriptome of iron-deficient Arabidopsis thaliana roots.
R. J. Stein and B. M. Waters (2012)
J. Exp. Bot. 63, 1039-1055
   Abstract »    Full Text »    PDF »
Hormonal Regulation of Lateral Root Development in Arabidopsis Modulated by MIZ1 and Requirement of GNOM Activity for MIZ1 Function.
T. Moriwaki, Y. Miyazawa, A. Kobayashi, M. Uchida, C. Watanabe, N. Fujii, and H. Takahashi (2011)
Plant Physiology 157, 1209-1220
   Abstract »    Full Text »    PDF »
Molecular Profiling of Stomatal Meristemoids Reveals New Component of Asymmetric Cell Division and Commonalities among Stem Cell Populations in Arabidopsis.
L. J. Pillitteri, K. M. Peterson, R. J. Horst, and K. U. Torii (2011)
PLANT CELL 23, 3260-3275
   Abstract »    Full Text »    PDF »
The ROOT DETERMINED NODULATION1 Gene Regulates Nodule Number in Roots of Medicago truncatula and Defines a Highly Conserved, Uncharacterized Plant Gene Family.
E. L. Schnabel, T. K. Kassaw, L. S. Smith, J. F. Marsh, G. E. Oldroyd, S. R. Long, and J. A. Frugoli (2011)
Plant Physiology 157, 328-340
   Abstract »    Full Text »    PDF »
Evolutionary divergence and limits of conserved non-coding sequence detection in plant genomes.
A. R. Reineke, E. Bornberg-Bauer, and J. Gu (2011)
Nucleic Acids Res. 39, 6029-6043
   Abstract »    Full Text »    PDF »
The GreenCut2 Resource, a Phylogenomically Derived Inventory of Proteins Specific to the Plant Lineage.
S. J. Karpowicz, S. E. Prochnik, A. R. Grossman, and S. S. Merchant (2011)
J. Biol. Chem. 286, 21427-21439
   Abstract »    Full Text »    PDF »
Biological assessment of robust noise models in microarray data analysis.
A. Posekany, K. Felsenstein, and P. Sykacek (2011)
Bioinformatics 27, 807-814
   Abstract »    Full Text »    PDF »
The Arabidopsis Multistress Regulator TSPO Is a Heme Binding Membrane Protein and a Potential Scavenger of Porphyrins via an Autophagy-Dependent Degradation Mechanism.
C. Vanhee, G. Zapotoczny, D. Masquelier, M. Ghislain, and H. Batoko (2011)
PLANT CELL 23, 785-805
   Abstract »    Full Text »    PDF »
iTRAQ Protein Profile Analysis of Arabidopsis Roots Reveals New Aspects Critical for Iron Homeostasis.
P. Lan, W. Li, T.-N. Wen, J.-Y. Shiau, Y.-C. Wu, W. Lin, and W. Schmidt (2011)
Plant Physiology 155, 821-834
   Abstract »    Full Text »    PDF »
A TSPO-related protein localizes to the early secretory pathway in Arabidopsis, but is targeted to mitochondria when expressed in yeast.
C. Vanhee, S. Guillon, D. Masquelier, H. Degand, M. Deleu, P. Morsomme, and H. Batoko (2011)
J. Exp. Bot. 62, 497-508
   Abstract »    Full Text »    PDF »
Ascorbate and Glutathione: The Heart of the Redox Hub.
C. H. Foyer and G. Noctor (2011)
Plant Physiology 155, 2-18
   Full Text »    PDF »
Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis.
M. J. Garcia, C. Lucena, F. J. Romera, E. Alcantara, and R. Perez-Vicente (2010)
J. Exp. Bot. 61, 3885-3899
   Abstract »    Full Text »    PDF »
The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana.
H.-S. Ma, D. Liang, P. Shuai, X.-L. Xia, and W.-L. Yin (2010)
J. Exp. Bot. 61, 4011-4019
   Abstract »    Full Text »    PDF »
ATHB12, an ABA-Inducible Homeodomain-Leucine Zipper (HD-Zip) Protein of Arabidopsis, Negatively Regulates the Growth of the Inflorescence Stem by Decreasing the Expression of a Gibberellin 20-Oxidase Gene.
O. Son, Y.-S. Hur, Y.-K. Kim, H.-J. Lee, S. Kim, M.-R. Kim, K. H. Nam, M.-S. Lee, B.-Y. Kim, J. Park, et al. (2010)
Plant Cell Physiol. 51, 1537-1547
   Abstract »    Full Text »    PDF »
The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency in Arabidopsis Roots.
T. A. Long, H. Tsukagoshi, W. Busch, B. Lahner, D. E. Salt, and P. N. Benfey (2010)
PLANT CELL 22, 2219-2236
   Abstract »    Full Text »    PDF »
Comparative physiology of elemental distributions in plants.
S. Conn and M. Gilliham (2010)
Ann. Bot. 105, 1081-1102
   Abstract »    Full Text »    PDF »
Applications of Microarrays for Crop Improvement: Here, There, and Everywhere.
D. W. Galbraith and J. Edwards (2010)
BioScience 60, 337-348
   Abstract »    Full Text »    PDF »
Systems Biology Update: Cell Type-Specific Transcriptional Regulatory Networks.
L. Pu and S. Brady (2010)
Plant Physiology 152, 411-419
   Full Text »    PDF »
Systems Biology Uncovers the Foundation of Natural Genetic Diversity.
D. J. Kliebenstein (2010)
Plant Physiology 152, 480-486
   Full Text »    PDF »
A Systems View of Responses to Nutritional Cues in Arabidopsis: Toward a Paradigm Shift for Predictive Network Modeling.
S. Ruffel, G. Krouk, and G. M. Coruzzi (2010)
Plant Physiology 152, 445-452
   Full Text »    PDF »
Developmental Stage Specificity and the Role of Mitochondrial Metabolism in the Response of Arabidopsis Leaves to Prolonged Mild Osmotic Stress.
A. Skirycz, S. De Bodt, T. Obata, I. De Clercq, H. Claeys, R. De Rycke, M. Andriankaja, O. Van Aken, F. Van Breusegem, A. R. Fernie, et al. (2010)
Plant Physiology 152, 226-244
   Abstract »    Full Text »    PDF »
Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis.
A. Mustroph, M. E. Zanetti, C. J. H. Jang, H. E. Holtan, P. P. Repetti, D. W. Galbraith, T. Girke, and J. Bailey-Serres (2009)
PNAS 106, 18843-18848
   Abstract »    Full Text »    PDF »
The Ferroportin Metal Efflux Proteins Function in Iron and Cobalt Homeostasis in Arabidopsis.
J. Morrissey, I. R. Baxter, J. Lee, L. Li, B. Lahner, N. Grotz, J. Kaplan, D. E. Salt, and M. L. Guerinot (2009)
PLANT CELL 21, 3326-3338
   Abstract »    Full Text »    PDF »
Loss of Halophytism by Interference with SOS1 Expression.
D.-H. Oh, E. Leidi, Q. Zhang, S.-M. Hwang, Y. Li, F. J. Quintero, X. Jiang, M. P. D'Urzo, S. Y. Lee, Y. Zhao, et al. (2009)
Plant Physiology 151, 210-222
   Abstract »    Full Text »    PDF »
Genomic approaches for designing durum wheat ready for climate change with a focus on drought.
D. Z. Habash, Z. Kehel, and M. Nachit (2009)
J. Exp. Bot. 60, 2805-2815
   Abstract »    Full Text »    PDF »
Redox-Dependent Regulation of the Stress-Induced Zinc-Finger Protein SAP12 in Arabidopsis thaliana.
E. Stroher, X.-J. Wang, N. Roloff, P. Klein, A. Husemann, and K.-J. Dietz (2009)
Mol Plant 2, 357-367
   Abstract »    Full Text »    PDF »
Positive Fluorescent Selection Permits Precise, Rapid, and In-Depth Overexpression Analysis in Plant Protoplasts.
B. O.R. Bargmann and K. D. Birnbaum (2009)
Plant Physiology 149, 1231-1239
   Abstract »    Full Text »    PDF »
A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of Medicago truncatula Roots to Salt Stress.
L. de Lorenzo, F. Merchan, P. Laporte, R. Thompson, J. Clarke, C. Sousa, and M. Crespi (2009)
PLANT CELL 21, 668-680
   Abstract »    Full Text »    PDF »
Functional Proteomics of Arabidopsis thaliana Guard Cells Uncovers New Stomatal Signaling Pathways.
Z. Zhao, W. Zhang, B. A. Stanley, and S. M. Assmann (2008)
PLANT CELL 20, 3210-3226
   Abstract »    Full Text »    PDF »
PLANT SCIENCE: Plant Stress Profiles.
L. A. C. J. Voesenek and R. Pierik (2008)
Science 320, 880-881
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882