Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 320 (5878): 949-953

Copyright © 2008 by the American Association for the Advancement of Science

cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker

John S. O'Neill,1* Elizabeth S. Maywood,1 Johanna E. Chesham,1 Joseph S. Takahashi,2 Michael H. Hastings1{dagger}

Abstract: The mammalian circadian clockwork is modeled as transcriptional and posttranslational feedback loops, whereby circadian genes are periodically suppressed by their protein products. We show that adenosine 3',5'-monophosphate (cAMP) signaling constitutes an additional, bona fide component of the oscillatory network. cAMP signaling is rhythmic and sustains the transcriptional loop of the suprachiasmatic nucleus, determining canonical pacemaker properties of amplitude, phase, and period. This role is general and is evident in peripheral mammalian tissues and cell lines, which reveals an unanticipated point of circadian regulation in mammals qualitatively different from the existing transcriptional feedback model. We propose that daily activation of cAMP signaling, driven by the transcriptional oscillator, in turn sustains progression of transcriptional rhythms. In this way, clock output constitutes an input to subsequent cycles.

1 Medical Research Council (MRC) Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
2 Howard Hughes Medical Institute, Department of Neurobiology and Physiology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208–3520, USA.

* Present address: Center for Systems Biology at Edinburgh, University of Edinburgh, Edinburgh EH9 3JU, UK.

{dagger} To whom correspondence should be addressed. E-mail: mha{at}

Coupling governs entrainment range of circadian clocks.
U. Abraham, A. E. Granada, P. O. Westermark, M. Heine, A. Kramer, and H. Herzel (2014)
Mol Syst Biol 6, 438
   Abstract »    Full Text »    PDF »
The Tau Mutation of Casein Kinase 1{epsilon} Sets the Period of the Mammalian Pacemaker via Regulation of Period1 or Period2 Clock Proteins.
E. S. Maywood, J. E. Chesham, N. J. Smyllie, and M. H. Hastings (2014)
J Biol Rhythms 29, 110-118
   Abstract »    Full Text »    PDF »
PDF and cAMP enhance PER stability in Drosophila clock neurons.
Y. Li, F. Guo, J. Shen, and M. Rosbash (2014)
PNAS 111, E1284-E1290
   Abstract »    Full Text »    PDF »
Phase-dependent resetting of the adrenal clock by ACTH in vitro.
J. M. Yoder, M. Brandeland, and W. C. Engeland (2014)
Am J Physiol Regulatory Integrative Comp Physiol 306, R387-R393
   Abstract »    Full Text »    PDF »
Circadian Rhythm of Contrast Sensitivity Is Regulated by a Dopamine-Neuronal PAS-Domain Protein 2-Adenylyl Cyclase 1 Signaling Pathway in Retinal Ganglion Cells.
C. K. Hwang, S. S. Chaurasia, C. R. Jackson, G. C.- K. Chan, D. R. Storm, and P. M. Iuvone (2013)
J. Neurosci. 33, 14989-14997
   Abstract »    Full Text »    PDF »
Vasoactive intestinal peptide produces long-lasting changes in neural activity in the suprachiasmatic nucleus.
T. Kudo, Y. Tahara, K. L. Gamble, D. G. McMahon, G. D. Block, and C. S. Colwell (2013)
J Neurophysiol 110, 1097-1106
   Abstract »    Full Text »    PDF »
Socially synchronized circadian oscillators.
G. Bloch, E. D. Herzog, J. D. Levine, and W. J. Schwartz (2013)
Proc R Soc B 280, 20130035
   Abstract »    Full Text »    PDF »
Analysis of core circadian feedback loop in suprachiasmatic nucleus of mCry1-luc transgenic reporter mouse.
E. S. Maywood, L. Drynan, J. E. Chesham, M. D. Edwards, H. Dardente, J.-M. Fustin, D. G. Hazlerigg, J. S. O'Neill, G. F. Codner, N. J. Smyllie, et al. (2013)
PNAS 110, 9547-9552
   Abstract »    Full Text »    PDF »
Diurnal Variation in Vascular and Metabolic Function in Diet-Induced Obesity: Divergence of Insulin Resistance and Loss of Clock Rhythm.
M. J. Prasai, R. S. Mughal, S. B. Wheatcroft, M. T. Kearney, P. J. Grant, and E. M. Scott (2013)
Diabetes 62, 1981-1989
   Abstract »    Full Text »    PDF »
Clock and Light Regulation of the CREB Coactivator CRTC1 in the Suprachiasmatic Circadian Clock.
K. Sakamoto, F. E. Norona, D. Alzate-Correa, D. Scarberry, K. R. Hoyt, and K. Obrietan (2013)
J. Neurosci. 33, 9021-9027
   Abstract »    Full Text »    PDF »
Rhythmic Control of the ARF-MDM2 Pathway by ATF4 Underlies Circadian Accumulation of p53 in Malignant Cells.
M. Horiguchi, S. Koyanagi, A. M. Hamdan, K. Kakimoto, N. Matsunaga, C. Yamashita, and S. Ohdo (2013)
Cancer Res. 73, 2639-2649
   Abstract »    Full Text »    PDF »
Exchange Protein Directly Activated by cAMP (epac): A Multidomain cAMP Mediator in the Regulation of Diverse Biological Functions.
M. Schmidt, F. J. Dekker, and H. Maarsingh (2013)
Pharmacol. Rev. 65, 670-709
   Abstract »    Full Text »    PDF »
Metabolism and the Circadian Clock Converge.
K. Eckel-Mahan and P. Sassone-Corsi (2013)
Physiol Rev 93, 107-135
   Abstract »    Full Text »    PDF »
Circadian Rhythm of Redox State Regulates Excitability in Suprachiasmatic Nucleus Neurons.
T. A. Wang, Y. V. Yu, G. Govindaiah, X. Ye, L. Artinian, T. P. Coleman, J. V. Sweedler, C. L. Cox, and M. U. Gillette (2012)
Science 337, 839-842
   Abstract »    Full Text »    PDF »
Role of Activating Transcription Factor-4 in 24-Hour Rhythm of Serotonin Transporter Expression in the Mouse Midbrain.
K. Ushijima, S. Koyanagi, Y. Sato, T. Ogata, N. Matsunaga, A. Fujimura, and S. Ohdo (2012)
Mol. Pharmacol. 82, 264-270
   Abstract »    Full Text »    PDF »
Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines.
R. Narasimamurthy, M. Hatori, S. K. Nayak, F. Liu, S. Panda, and I. M. Verma (2012)
PNAS 109, 12662-12667
   Abstract »    Full Text »    PDF »
Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network.
K. R. Lelito and O. T. Shafer (2012)
J Neurophysiol 107, 2096-2108
   Abstract »    Full Text »    PDF »
Coordination of the transcriptome and metabolome by the circadian clock.
K. L. Eckel-Mahan, V. R. Patel, R. P. Mohney, K. S. Vignola, P. Baldi, and P. Sassone-Corsi (2012)
PNAS 109, 5541-5546
   Abstract »    Full Text »    PDF »
Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening.
Z. Chen, S.-H. Yoo, Y.-S. Park, K.-H. Kim, S. Wei, E. Buhr, Z.-Y. Ye, H.-L. Pan, and J. S. Takahashi (2012)
PNAS 109, 101-106
   Abstract »    Full Text »    PDF »
cAMP-response Element (CRE)-mediated Transcription by Activating Transcription Factor-4 (ATF4) Is Essential for Circadian Expression of the Period2 Gene.
S. Koyanagi, A. M. Hamdan, M. Horiguchi, N. Kusunose, A. Okamoto, N. Matsunaga, and S. Ohdo (2011)
J. Biol. Chem. 286, 32416-32423
   Abstract »    Full Text »    PDF »
A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits.
E. S. Maywood, J. E. Chesham, J. A. O'Brien, and M. H. Hastings (2011)
PNAS 108, 14306-14311
   Abstract »    Full Text »    PDF »
Cyclic AMP Signaling Control of Action Potential Firing Rate and Molecular Circadian Pacemaking in the Suprachiasmatic Nucleus.
S. E. Atkinson, E. S. Maywood, J. E. Chesham, C. Wozny, C. S. Colwell, M. H. Hastings, and S. R. Williams (2011)
J Biol Rhythms 26, 210-220
   Abstract »    PDF »
Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase.
S. An, R. P. Irwin, C. N. Allen, C. Tsai, and E. D. Herzog (2011)
J Neurophysiol 105, 2289-2296
   Abstract »    Full Text »    PDF »
The Mammalian Circadian Timing System: Synchronization of Peripheral Clocks.
C. Saini, D. M. Suter, A. Liani, P. Gos, and U. Schibler (2011)
Cold Spring Harb Symp Quant Biol 76, 39-47
   Abstract »    Full Text »    PDF »
The Transcriptional Repressor ID2 Can Interact with the Canonical Clock Components CLOCK and BMAL1 and Mediate Inhibitory Effects on mPer1 Expression.
S. M. Ward, S. J. Fernando, T. Y. Hou, and G. E. Duffield (2010)
J. Biol. Chem. 285, 38987-39000
   Abstract »    Full Text »    PDF »
Circadian Integration of Metabolism and Energetics.
J. Bass and J. S. Takahashi (2010)
Science 330, 1349-1354
   Abstract »    Full Text »    PDF »
CREB Influences Timing and Entrainment of the SCN Circadian Clock.
B. Lee, Aiqing Li, K. F. Hansen, Ruifeng Cao, Jae Hwa Yoon, and K. Obrietan (2010)
J Biol Rhythms 25, 410-420
   Abstract »    PDF »
Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators.
E. D. Buhr, S.-H. Yoo, and J. S. Takahashi (2010)
Science 330, 379-385
   Abstract »    Full Text »    PDF »
Physiology of Circadian Entrainment.
D. A. Golombek and R. E. Rosenstein (2010)
Physiol Rev 90, 1063-1102
   Abstract »    Full Text »    PDF »
Chronic stimulation of the hypothalamic vasoactive intestinal peptide receptor lengthens circadian period in mice and hamsters.
H. Pantazopoulos, H. Dolatshad, and F. C. Davis (2010)
Am J Physiol Regulatory Integrative Comp Physiol 299, R379-R385
   Abstract »    Full Text »    PDF »
Circadian Rhythms and Metabolic Syndrome: From Experimental Genetics to Human Disease.
E. Maury, K. M. Ramsey, and J. Bass (2010)
Circ. Res. 106, 447-462
   Abstract »    Full Text »    PDF »
Clock Gene Modulation by TNF-{alpha} Depends on Calcium and p38 MAP Kinase Signaling.
S. Petrzilka, C. Taraborrelli, G. Cavadini, A. Fontana, and T. Birchler (2009)
J Biol Rhythms 24, 283-294
   Abstract »    PDF »
Circadian rhythms and memory: not so simple as cogs and gears.
K. L. Eckel-Mahan and D. R. Storm (2009)
EMBO Rep. 10, 584-591
   Abstract »    Full Text »    PDF »
Direct Spatial Control of Epac1 by Cyclic AMP.
B. Ponsioen, M. Gloerich, L. Ritsma, H. Rehmann, J. L. Bos, and K. Jalink (2009)
Mol. Cell. Biol. 29, 2521-2531
   Abstract »    Full Text »    PDF »
Cry1 Circadian Phase in vitro: Wrapped Up with an E-Box.
J.M. Fustin, J.S. O'Neill, M.H. Hastings, D.G. Hazlerigg, and H. Dardente (2009)
J Biol Rhythms 24, 16-24
   Abstract »    PDF »
Circadian clocks can take a few transcriptional knocks.
J. S. O'Neill (2009)
EMBO J. 28, 84-85
   Abstract »    Full Text »    PDF »
The Circadian Clock in Arabidopsis Roots Is a Simplified Slave Version of the Clock in Shoots.
A. B. James, J. A. Monreal, G. A. Nimmo, C. L. Kelly, P. Herzyk, G. I. Jenkins, and H. G. Nimmo (2008)
Science 322, 1832-1835
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Integrating Circadian Timekeeping with Cellular Physiology.
M. C. Harrisingh and M. N. Nitabach (2008)
Science 320, 879-880
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882