Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 320 (5880): 1185-1190

Copyright © 2008 by the American Association for the Advancement of Science

Widespread Translational Inhibition by Plant miRNAs and siRNAs

Peter Brodersen,1 Lali Sakvarelidze-Achard,1 Marianne Bruun-Rasmussen,1 Patrice Dunoyer,1 Yoshiharu Y. Yamamoto,2 Leslie Sieburth,3 Olivier Voinnet1*

Abstract: High complementarity between plant microRNAs (miRNAs) and their messenger RNA targets is thought to cause silencing, prevalently by endonucleolytic cleavage. We have isolated Arabidopsis mutants defective in miRNA action. Their analysis provides evidence that plant miRNA–guided silencing has a widespread translational inhibitory component that is genetically separable from endonucleolytic cleavage. We further show that the same is true of silencing mediated by small interfering RNA (siRNA) populations. Translational repression is effected in part by the ARGONAUTE proteins AGO1 and AGO10. It also requires the activity of the microtubule-severing enzyme katanin, implicating cytoskeleton dynamics in miRNA action, as recently suggested from animal studies. Also as in animals, the decapping component VARICOSE (VCS)/Ge-1 is required for translational repression by miRNAs, which suggests that the underlying mechanisms in the two kingdoms are related.

1 Institut de Biologie Moléculaire des Plantes du CNRS, Unité Propre de Recherche 2357, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
2 Center for Gene Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya Aichi, 464-8602, Japan.
3 Department of Biology, University of Utah, Salt Lake City, UT84112, USA.

* To whom correspondence should be addressed. E-mail: olivier.voinnet{at}

The protein kinase TOUSLED facilitates RNAi in Arabidopsis.
M. N. Uddin, P. Dunoyer, G. Schott, S. Akhter, C. Shi, W. J. Lucas, O. Voinnet, and J.-Y. Kim (2014)
Nucleic Acids Res. 42, 7971-7980
   Abstract »    Full Text »    PDF »
Phosphoproteomic Analyses Reveal Early Signaling Events in the Osmotic Stress Response.
K. E. Stecker, B. B. Minkoff, and M. R. Sussman (2014)
Plant Physiology 165, 1171-1187
   Abstract »    Full Text »    PDF »
Regulation of flowering time by the miR156-mediated age pathway.
J.-W. Wang (2014)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
Global Regulation of Embryonic Patterning in Arabidopsis by MicroRNAs.
W. F. Seefried, M. R. Willmann, R. L. Clausen, and P. D. Jenik (2014)
Plant Physiology 165, 670-687
   Abstract »    Full Text »    PDF »
Traffic into silence: endomembranes and post-transcriptional RNA silencing.
Y. J. Kim, A. Maizel, and X. Chen (2014)
EMBO J. 33, 968-980
   Abstract »    Full Text »    PDF »
Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice.
Y. Fang, K. Xie, and L. Xiong (2014)
J. Exp. Bot. 65, 2119-2135
   Abstract »    Full Text »    PDF »
Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control.
Y. Jiao and E. M. Meyerowitz (2014)
Mol Syst Biol 6, 419
   Abstract »    Full Text »    PDF »
A non-canonical plant microRNA target site.
C. Brousse, Q. Liu, L. Beauclair, A. Deremetz, M. J. Axtell, and N. Bouche (2014)
Nucleic Acids Res. 42, 5270-5279
   Abstract »    Full Text »    PDF »
Cnidarian microRNAs frequently regulate targets by cleavage.
Y. Moran, D. Fredman, D. Praher, X. Z. Li, L. M. Wee, F. Rentzsch, P. D. Zamore, U. Technau, and H. Seitz (2014)
Genome Res. 24, 651-663
   Abstract »    Full Text »    PDF »
The role of microRNAs in the control of flowering time.
E. Spanudakis and S. Jackson (2014)
J. Exp. Bot. 65, 365-380
   Abstract »    Full Text »    PDF »
Binding and processing of small dsRNA molecules by the class 1 RNase III protein encoded by sweet potato chlorotic stunt virus.
I. Weinheimer, K. Boonrod, M. Moser, M. Wassenegger, G. Krczal, S. J. Butcher, and J. P. T. Valkonen (2014)
J. Gen. Virol. 95, 486-495
   Abstract »    Full Text »    PDF »
Analysis of Complementarity Requirements for Plant MicroRNA Targeting Using a Nicotiana benthamiana Quantitative Transient Assay.
Q. Liu, F. Wang, and M. J. Axtell (2014)
PLANT CELL 26, 741-753
   Abstract »    Full Text »    PDF »
Molecular Mechanism of microRNA396 Mediating Pistil Development in Arabidopsis.
G. Liang, H. He, Y. Li, F. Wang, and D. Yu (2014)
Plant Physiology 164, 249-258
   Abstract »    Full Text »    PDF »
ProteoMirExpress: Inferring MicroRNA and Protein-centered Regulatory Networks from High-throughput Proteomic and mRNA Expression Data.
J. Qin, M. J. Li, P. Wang, N. S. Wong, M. P. Wong, Z. Xia, G. S. W. Tsao, M. Q. Zhang, and J. Wang (2013)
Mol. Cell. Proteomics 12, 3379-3387
   Abstract »    Full Text »    PDF »
Genome-wide identification and characterization of cadmium-responsive microRNAs and their target genes in radish (Raphanus sativus L.) roots.
L. Xu, Y. Wang, L. Zhai, Y. Xu, L. Wang, X. Zhu, Y. Gong, R. Yu, C. Limera, and L. Liu (2013)
J. Exp. Bot. 64, 4271-4287
   Abstract »    Full Text »    PDF »
miRISC recruits decapping factors to miRNA targets to enhance their degradation.
T. Nishihara, L. Zekri, J. E. Braun, and E. Izaurralde (2013)
Nucleic Acids Res. 41, 8692-8705
   Abstract »    Full Text »    PDF »
Translational Landscape of Photomorphogenic Arabidopsis.
M.-J. Liu, S.-H. Wu, J.-F. Wu, W.-D. Lin, Y.-C. Wu, T.-Y. Tsai, H.-L. Tsai, and S.-H. Wu (2013)
PLANT CELL 25, 3699-3710
   Abstract »    Full Text »    PDF »
A Genomic-Scale Artificial MicroRNA Library as a Tool to Investigate the Functionally Redundant Gene Space in Arabidopsis.
F. Hauser, W. Chen, U. Deinlein, K. Chang, S. Ossowski, J. Fitz, G. J. Hannon, and J. I. Schroeder (2013)
PLANT CELL 25, 2848-2863
   Abstract »    Full Text »    PDF »
Involvement of MicroRNA in Copper Deficiency-Induced Repression of Chloroplastic CuZn-Superoxide Dismutase Genes in the Moss Physcomitrella patens.
Y. Higashi, K. Takechi, H. Takano, and S. Takio (2013)
Plant Cell Physiol. 54, 1345-1355
   Abstract »    Full Text »    PDF »
Introns of plant pri-miRNAs enhance miRNA biogenesis.
D. Bielewicz, M. Kalak, M. Kalyna, D. Windels, A. Barta, F. Vazquez, Z. Szweykowska-Kulinska, and A. Jarmolowski (2013)
EMBO Rep. 14, 622-628
   Abstract »    Full Text »    PDF »
Biogenesis, Turnover, and Mode of Action of Plant MicroRNAs.
K. Rogers and X. Chen (2013)
PLANT CELL 25, 2383-2399
   Abstract »    Full Text »    PDF »
The Methylation of the PcMYB10 Promoter Is Associated with Green-Skinned Sport in Max Red Bartlett Pear.
Z. Wang, D. Meng, A. Wang, T. Li, S. Jiang, P. Cong, and T. Li (2013)
Plant Physiology 162, 885-896
   Abstract »    Full Text »    PDF »
A Significant Fraction of 21-Nucleotide Small RNA Originates from Phased Degradation of Resistance Genes in Several Perennial Species.
T. Kallman, J. Chen, N. Gyllenstrand, and U. Lagercrantz (2013)
Plant Physiology 162, 741-754
   Abstract »    Full Text »    PDF »
Comprehensive Protein-Based Artificial MicroRNA Screens for Effective Gene Silencing in Plants.
J.-F. Li, H. S. Chung, Y. Niu, J. Bush, M. McCormack, and J. Sheen (2013)
PLANT CELL 25, 1507-1522
   Abstract »    Full Text »    PDF »
Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation.
J. Hausser, A. P. Syed, B. Bilen, and M. Zavolan (2013)
Genome Res. 23, 604-615
   Abstract »    Full Text »    PDF »
Small Interfering RNA-Mediated Translation Repression Alters Ribosome Sensitivity to Inhibition by Cycloheximide in Chlamydomonas reinhardtii.
X. Ma, E.-J. Kim, I. Kook, F. Ma, A. Voshall, E. Moriyama, and H. Cerutti (2013)
PLANT CELL 25, 985-998
   Abstract »    Full Text »    PDF »
Tissue-Specific Silencing of Arabidopsis SU(VAR)3-9 HOMOLOG8 by miR171a.
P. A. Manavella, D. Koenig, I. Rubio-Somoza, H. A. Burbano, C. Becker, and D. Weigel (2013)
Plant Physiology 161, 805-812
   Abstract »    Full Text »    PDF »
Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea.
S. Srivastava, A. K. Srivastava, P. Suprasanna, and S. F. D'Souza (2013)
J. Exp. Bot. 64, 303-315
   Abstract »    Full Text »    PDF »
Lessons on RNA Silencing Mechanisms in Plants from Eukaryotic Argonaute Structures.
C. Poulsen, H. Vaucheret, and P. Brodersen (2013)
PLANT CELL 25, 22-37
   Abstract »    Full Text »    PDF »
A Molecular Link between miRISCs and Deadenylases Provides New Insight into the Mechanism of Gene Silencing by MicroRNAs.
J. E. Braun, E. Huntzinger, and E. Izaurralde (2012)
Cold Spring Harb Perspect Biol 4, a012328
   Abstract »    Full Text »    PDF »
Two MicroRNAs Linked to Nodule Infection and Nitrogen-Fixing Ability in the Legume Lotus japonicus.
A. De Luis, K. Markmann, V. Cognat, D. B. Holt, M. Charpentier, M. Parniske, J. Stougaard, and O. Voinnet (2012)
Plant Physiology 160, 2137-2154
   Abstract »    Full Text »    PDF »
Ultradeep Sequencing Analysis of Population Dynamics of Virus Escape Mutants in RNAi-Mediated Resistant Plants.
F. Martinez, G. Lafforgue, M. J. Morelli, F. Gonzalez-Candelas, N.-H. Chua, J.-A. Daros, and S. F. Elena (2012)
Mol. Biol. Evol. 29, 3297-3307
   Abstract »    Full Text »    PDF »
Dissecting Functions of KATANIN and WRINKLED1 in Cotton Fiber Development by Virus-Induced Gene Silencing.
J. Qu, J. Ye, Y.-F. Geng, Y.-W. Sun, S.-Q. Gao, B.-P. Zhang, W. Chen, and N.-H. Chua (2012)
Plant Physiology 160, 738-748
   Abstract »    Full Text »    PDF »
Functional Analysis of Three Arabidopsis ARGONAUTES Using Slicer-Defective Mutants.
A. Carbonell, N. Fahlgren, H. Garcia-Ruiz, K. B. Gilbert, T. A. Montgomery, T. Nguyen, J. T. Cuperus, and J. C. Carrington (2012)
PLANT CELL 24, 3613-3629
   Abstract »    Full Text »    PDF »
IAA-Ala Resistant3, an Evolutionarily Conserved Target of miR167, Mediates Arabidopsis Root Architecture Changes during High Osmotic Stress.
N. Kinoshita, H. Wang, H. Kasahara, J. Liu, C. MacPherson, Y. Machida, Y. Kamiya, M. A. Hannah, and N.-H. Chua (2012)
PLANT CELL 24, 3590-3602
   Abstract »    Full Text »    PDF »
The MicroRNA Pathway Genes AGO1, HEN1 and HYL1 Participate in Leaf Proximal-Distal, Venation and Stomatal Patterning in Arabidopsis.
S. Jover-Gil, H. Candela, P. Robles, V. Aguilera, J. M. Barrero, J. L. Micol, and M. R. Ponce (2012)
Plant Cell Physiol. 53, 1322-1333
   Abstract »    Full Text »    PDF »
Complexity of miRNA-dependent regulation in root symbiosis.
J. Bazin, P. Bustos-Sanmamed, C. Hartmann, C. Lelandais-Briere, and M. Crespi (2012)
Phil Trans R Soc B 367, 1570-1579
   Abstract »    Full Text »    PDF »
Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1.
G. Schott, A. Mari-Ordonez, C. Himber, A. Alioua, O. Voinnet, and P. Dunoyer (2012)
EMBO J. 31, 2553-2565
   Abstract »    Full Text »    PDF »
Dehydration stress activates Arabidopsis MPK6 to signal DCP1 phosphorylation.
J. Xu and N.-H. Chua (2012)
EMBO J. 31, 1975-1984
   Abstract »    Full Text »    PDF »
MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review.
M. V. Iorio and C. M. Croce (2012)
EMBO Mol Med. 4, 143-159
   Abstract »    Full Text »    PDF »
Known and novel post-transcriptional regulatory sequences are conserved across plant families.
J. N. Vaughn, S. R. Ellingson, F. Mignone, and A. von Arnim (2012)
RNA 18, 368-384
   Abstract »    Full Text »    PDF »
A MicroRNA Superfamily Regulates Nucleotide Binding Site-Leucine-Rich Repeats and Other mRNAs.
P. V. Shivaprasad, H.-M. Chen, K. Patel, D. M. Bond, B. A. C. M. Santos, and D. C. Baulcombe (2012)
PLANT CELL 24, 859-874
   Abstract »    Full Text »    PDF »
Isoprenoid biosynthesis is required for miRNA function and affects membrane association of ARGONAUTE 1 in Arabidopsis.
P. Brodersen, L. Sakvarelidze-Achard, H. Schaller, M. Khafif, G. Schott, A. Bendahmane, and O. Voinnet (2012)
PNAS 109, 1778-1783
   Abstract »    Full Text »    PDF »
Mutations in the GW-repeat protein SUO reveal a developmental function for microRNA-mediated translational repression in Arabidopsis.
L. Yang, G. Wu, and R. S. Poethig (2012)
PNAS 109, 315-320
   Abstract »    Full Text »    PDF »
Decoding Plant and Animal Genome Plasticity from Differential Paleo-Evolutionary Patterns and Processes.
F. Murat, Y. V. d. Peer, and J. Salse (2012)
Genome Biol Evol 4, 917-928
   Abstract »    Full Text »    PDF »
mirEX: a platform for comparative exploration of plant pri-miRNA expression data.
D. Bielewicz, J. Dolata, A. Zielezinski, S. Alaba, B. Szarzynska, M. W. Szczesniak, A. Jarmolowski, Z. Szweykowska-Kulinska, and W. M. Karlowski (2012)
Nucleic Acids Res. 40, D191-D197
   Abstract »    Full Text »    PDF »
Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa.
X. Yu, H. Wang, Y. Lu, M. de Ruiter, M. Cariaso, M. Prins, A. van Tunen, and Y. He (2012)
J. Exp. Bot. 63, 1025-1038
   Abstract »    Full Text »    PDF »
Suppression of Arabidopsis ARGONAUTE1-Mediated Slicing, Transgene-Induced RNA Silencing, and DNA Methylation by Distinct Domains of the Cucumber mosaic virus 2b Protein.
C.-G. Duan, Y.-Y. Fang, B.-J. Zhou, J.-H. Zhao, W.-N. Hou, H. Zhu, S.-W. Ding, and H.-S. Guo (2012)
PLANT CELL 24, 259-274
   Abstract »    Full Text »    PDF »
Massive Analysis of Rice Small RNAs: Mechanistic Implications of Regulated MicroRNAs and Variants for Differential Target RNA Cleavage.
D.-H. Jeong, S. Park, J. Zhai, S. G. R. Gurazada, E. De Paoli, B. C. Meyers, and P. J. Green (2011)
PLANT CELL 23, 4185-4207
   Abstract »    Full Text »    PDF »
The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective.
Y. Meng, C. Shao, H. Wang, and M. Chen (2011)
Plant Physiology 157, 1583-1595
   Full Text »    PDF »
Toward microRNA-mediated gene regulatory networks in plants.
Y. Meng, C. Shao, and M. Chen (2011)
Brief Bioinform 12, 645-659
   Abstract »    Full Text »    PDF »
Tempo and Mode of Plant RNA Virus Escape from RNA Interference-Mediated Resistance.
G. Lafforgue, F. Martinez, J. Sardanyes, F. de la Iglesia, Q.-W. Niu, S.-S. Lin, R. V. Sole, N.-H. Chua, J.-A. Daros, and S. F. Elena (2011)
J. Virol. 85, 9686-9695
   Abstract »    Full Text »    PDF »
Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa).
T. Peng, Q. Lv, J. Zhang, J. Li, Y. Du, and Q. Zhao (2011)
J. Exp. Bot. 62, 4943-4954
   Abstract »    Full Text »    PDF »
An Importin {beta} Protein Negatively Regulates MicroRNA Activity in Arabidopsis.
W. Wang, R. Ye, Y. Xin, X. Fang, C. Li, H. Shi, X. Zhou, and Y. Qi (2011)
PLANT CELL 23, 3565-3576
   Abstract »    Full Text »    PDF »
Stars and Symbiosis: MicroRNA- and MicroRNA*-Mediated Transcript Cleavage Involved in Arbuscular Mycorrhizal Symbiosis.
E. A. Devers, A. Branscheid, P. May, and F. Krajinski (2011)
Plant Physiology 156, 1990-2010
   Abstract »    Full Text »    PDF »
psRNATarget: a plant small RNA target analysis server.
X. Dai and P. X. Zhao (2011)
Nucleic Acids Res. 39, W155-W159
   Abstract »    Full Text »    PDF »
Identification of an ARGONAUTE for Antiviral RNA Silencing in Nicotiana benthamiana.
H. B. Scholthof, V. Y. Alvarado, J. C. Vega-Arreguin, J. Ciomperlik, D. Odokonyero, C. Brosseau, M. Jaubert, A. Zamora, and P. Moffett (2011)
Plant Physiology 156, 1548-1555
   Abstract »    Full Text »    PDF »
MicroRNAs in the shoot apical meristem of soybean.
C. E. Wong, Y.-T. Zhao, X.-J. Wang, L. Croft, Z.-H. Wang, F. Haerizadeh, J. S. Mattick, M. B. Singh, B. J. Carroll, and P. L. Bhalla (2011)
J. Exp. Bot. 62, 2495-2506
   Abstract »    Full Text »    PDF »
Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica).
T. Li, H. Li, Y.-X. Zhang, and J.-Y. Liu (2011)
Nucleic Acids Res. 39, 2821-2833
   Abstract »    Full Text »    PDF »
ETOILE Regulates Developmental Patterning in the Filamentous Brown Alga Ectocarpus siliculosus.
A. Le Bail, B. Billoud, S. Le Panse, S. Chenivesse, and B. Charrier (2011)
PLANT CELL 23, 1666-1678
   Abstract »    Full Text »    PDF »
Computational analysis of miRNA targets in plants: current status and challenges.
X. Dai, Z. Zhuang, and P. X. Zhao (2011)
Brief Bioinform 12, 115-121
   Abstract »    Full Text »    PDF »
Small RNA activity and function in angiosperm gametophytes.
G. Le Trionnaire, R. T. Grant-Downton, S. Kourmpetli, H. G. Dickinson, and D. Twell (2011)
J. Exp. Bot. 62, 1601-1610
   Abstract »    Full Text »    PDF »
MicroRNA activity in the Arabidopsis male germline.
F. Borges, P. A. Pereira, R. K. Slotkin, R. A. Martienssen, and J. D. Becker (2011)
J. Exp. Bot. 62, 1611-1620
   Abstract »    Full Text »    PDF »
Evolution and Functional Diversification of MIRNA Genes.
J. T. Cuperus, N. Fahlgren, and J. C. Carrington (2011)
PLANT CELL 23, 431-442
   Abstract »    Full Text »    PDF »
Regulation of flowering time and floral patterning by miR172.
Q.-H. Zhu and C. A. Helliwell (2011)
J. Exp. Bot. 62, 487-495
   Abstract »    Full Text »    PDF »
Target-align: a tool for plant microRNA target identification.
F. Xie and B. Zhang (2010)
Bioinformatics 26, 3002-3003
   Abstract »    Full Text »    PDF »
Form, Function, and Regulation of ARGONAUTE Proteins.
A. Mallory and H. Vaucheret (2010)
PLANT CELL 22, 3879-3889
   Abstract »    Full Text »    PDF »
Complex Regulation of Two Target Genes Encoding SPX-MFS Proteins by Rice miR827 in Response to Phosphate Starvation.
S.-I. Lin, C. Santi, E. Jobet, E. Lacut, N. El Kholti, W. M. Karlowski, J.-L. Verdeil, J. C. Breitler, C. Perin, S.-S. Ko, et al. (2010)
Plant Cell Physiol. 51, 2119-2131
   Abstract »    Full Text »    PDF »
MicroRNA Gene Regulation Cascades During Early Stages of Plant Development.
H. Nonogaki (2010)
Plant Cell Physiol. 51, 1840-1846
   Abstract »    Full Text »    PDF »
Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation.
E. Varallyay, A. Valoczi, A. Agyi, J. Burgyan, and Z. Havelda (2010)
EMBO J. 29, 3507-3519
   Abstract »    Full Text »    PDF »
Global effects of the small RNA biogenesis machinery on the Arabidopsis thaliana transcriptome.
S. Laubinger, G. Zeller, S. R. Henz, S. Buechel, T. Sachsenberg, J.-W. Wang, G. Ratsch, and D. Weigel (2010)
PNAS 107, 17466-17473
   Abstract »    Full Text »    PDF »
The MicroRNA159-Regulated GAMYB-like Genes Inhibit Growth and Promote Programmed Cell Death in Arabidopsis.
M. M. Alonso-Peral, J. Li, Y. Li, R. S. Allen, W. Schnippenkoetter, S. Ohms, R. G. White, and A. A. Millar (2010)
Plant Physiology 154, 757-771
   Abstract »    Full Text »    PDF »
Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes.
W. Zhang, C. Murphy, and L. E. Sieburth (2010)
PNAS 107, 15981-15985
   Abstract »    Full Text »    PDF »
RNA silencing amplification in plants: Size matters.
R. Schwab and O. Voinnet (2010)
PNAS 107, 14945-14946
   Full Text »    PDF »
The Conserved RNA Trafficking Proteins HPR1 and TEX1 Are Involved in the Production of Endogenous and Exogenous Small Interfering RNA in Arabidopsis.
V. Jauvion, T. Elmayan, and H. Vaucheret (2010)
PLANT CELL 22, 2697-2709
   Abstract »    Full Text »    PDF »
TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.
E. Bonnet, Y. He, K. Billiau, and Y. Van de Peer (2010)
Bioinformatics 26, 1566-1568
   Abstract »    Full Text »    PDF »
Small RNAs in angiosperm gametophytes: from epigenetics to gamete development.
G. Le Trionnaire and D. Twell (2010)
Genes & Dev. 24, 1081-1085
   Abstract »    Full Text »    PDF »
An endogenous, systemic RNAi pathway in plants.
P. Dunoyer, C. A. Brosnan, G. Schott, Y. Wang, F. Jay, A. Alioua, C. Himber, and O. Voinnet (2010)
EMBO J. 29, 1699-1712
   Abstract »    Full Text »    PDF »
Small RNA Duplexes Function as Mobile Silencing Signals Between Plant Cells.
P. Dunoyer, G. Schott, C. Himber, D. Meyer, A. Takeda, J. C. Carrington, and O. Voinnet (2010)
Science 328, 912-916
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882