Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 321 (5893): 1203-1206

Copyright © 2008 by the American Association for the Advancement of Science

Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria

Lars E. P. Dietrich,1,3 Tracy K. Teal,4 Alexa Price-Whelan,1,4 Dianne K. Newman1,2,3*

Abstract: It is thought that bacteria excrete redox-active pigments as antibiotics to inhibit competitors. In Pseudomonas aeruginosa, the endogenous antibiotic pyocyanin activates SoxR, a transcription factor conserved in Proteo- and Actinobacteria. In Escherichia coli, SoxR regulates the superoxide stress response. Bioinformatic analysis coupled with gene expression studies in P. aeruginosa and Streptomyces coelicolor revealed that the majority of SoxR regulons in bacteria lack the genes required for stress responses, despite the fact that many of these organisms still produce redox-active small molecules, which indicates that redox-active pigments play a role independent of oxidative stress. These compounds had profound effects on the structural organization of colony biofilms in both P. aeruginosa and S. coelicolor, which shows that "secondary metabolites" play important conserved roles in gene expression and development.

1 Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA.
2 Department of Earth and Planetary Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA.
3 Howard Hughes Medical Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 01239, USA.
4 Division of Biology, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.

* To whom correspondence should be addressed. E-mail: dkn{at}

Impact of a Transposon Insertion in phzF2 on the Specialized Metabolite Production and Interkingdom Interactions of Pseudomonas aeruginosa.
V. V. Phelan, W. J. Moree, J. Aguilar, D. S. Cornett, A. Koumoutsi, S. M. Noble, K. Pogliano, C. A. Guerrero, and P. C. Dorrestein (2014)
J. Bacteriol. 196, 1683-1693
   Abstract »    Full Text »    PDF »
Angucyclines as signals modulate the behaviors of Streptomyces coelicolor.
W. Wang, J. Ji, X. Li, J. Wang, S. Li, G. Pan, K. Fan, and K. Yang (2014)
PNAS 111, 5688-5693
   Abstract »    Full Text »    PDF »
Morphological optimization for access to dual oxidants in biofilms.
C. P. Kempes, C. Okegbe, Z. Mears-Clarke, M. J. Follows, and L. E. P. Dietrich (2014)
PNAS 111, 208-213
   Abstract »    Full Text »    PDF »
Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase.
I. Kolodkin-Gal, A. K. W. Elsholz, C. Muth, P. R. Girguis, R. Kolter, and R. Losick (2013)
Genes & Dev. 27, 887-899
   Abstract »    Full Text »    PDF »
Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State.
L. E. P. Dietrich, C. Okegbe, A. Price-Whelan, H. Sakhtah, R. C. Hunter, and D. K. Newman (2013)
J. Bacteriol. 195, 1371-1380
   Abstract »    Full Text »    PDF »
Iron induces bimodal population development by Escherichia coli.
W. H. DePas, D. A. Hufnagel, J. S. Lee, L. P. Blanco, H. C. Bernstein, S. T. Fisher, G. A. James, P. S. Stewart, and M. R. Chapman (2013)
PNAS 110, 2629-2634
   Abstract »    Full Text »    PDF »
Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines.
D. K. Morales, N. Grahl, C. Okegbe, L. E. P. Dietrich, N. J. Jacobs, and D. A. Hogan (2013)
mBio 4, e00526-12
   Abstract »    Full Text »    PDF »
Redundant phenazine operons in Pseudomonas aeruginosa exhibit environment-dependent expression and differential roles in pathogenicity.
D. A. Recinos, M. D. Sekedat, A. Hernandez, T. S. Cohen, H. Sakhtah, A. S. Prince, A. Price-Whelan, and L. E. P. Dietrich (2012)
PNAS 109, 19420-19425
   Abstract »    Full Text »    PDF »
M. Fujikawa, K. Kobayashi, and T. Kozawa (2012)
J. Biol. Chem. 287, 35702-35708
   Abstract »    Full Text »    PDF »
Geothrix fermentans Secretes Two Different Redox-Active Compounds To Utilize Electron Acceptors across a Wide Range of Redox Potentials.
M. G. Mehta-Kolte and D. R. Bond (2012)
Appl. Envir. Microbiol. 78, 6987-6995
   Abstract »    Full Text »    PDF »
Interkingdom metabolic transformations captured by microbial imaging mass spectrometry.
W. J. Moree, V. V. Phelan, C.-H. Wu, N. Bandeira, D. S. Cornett, B. M. Duggan, and P. C. Dorrestein (2012)
PNAS 109, 13811-13816
   Abstract »    Full Text »    PDF »
MexT Functions as a Redox-Responsive Regulator Modulating Disulfide Stress Resistance in Pseudomonas aeruginosa.
E. Fargier, M. Mac Aogain, M. J. Mooij, D. F. Woods, J. P. Morrissey, A. D. W. Dobson, C. Adams, and F. O'Gara (2012)
J. Bacteriol. 194, 3502-3511
   Abstract »    Full Text »    PDF »
The Multiple Signaling Systems Regulating Virulence in Pseudomonas aeruginosa.
P. Nadal Jimenez, G. Koch, J. A. Thompson, K. B. Xavier, R. H. Cool, and W. J. Quax (2012)
Microbiol. Mol. Biol. Rev. 76, 46-65
   Abstract »    Full Text »    PDF »
Novel Roles of SoxR, a Transcriptional Regulator from Xanthomonas campestris, in Sensing Redox-Cycling Drugs and Regulating a Protective Gene That Have Overall Implications for Bacterial Stress Physiology and Virulence on a Host Plant.
A. Mahavihakanont, N. Charoenlap, P. Namchaiw, W. Eiamphungporn, S. Chattrakarn, P. Vattanaviboon, and S. Mongkolsuk (2012)
J. Bacteriol. 194, 209-217
   Abstract »    Full Text »    PDF »
2-Heptyl-4-Quinolone, a Precursor of the Pseudomonas Quinolone Signal Molecule, Modulates Swarming Motility in Pseudomonas aeruginosa.
D.-G. Ha, J. H. Merritt, T. H. Hampton, J. T. Hodgkinson, M. Janecek, D. R. Spring, M. Welch, and G. A. O'Toole (2011)
J. Bacteriol. 193, 6770-6780
   Abstract »    Full Text »    PDF »
Comparative Genomic Analysis of Acinetobacter oleivorans DR1 To Determine Strain-Specific Genomic Regions and Gentisate Biodegradation.
J. Jung, E. L. Madsen, C. O. Jeon, and W. Park (2011)
Appl. Envir. Microbiol. 77, 7418-7424
   Abstract »    Full Text »    PDF »
Phenazine-1-Carboxylic Acid Promotes Bacterial Biofilm Development via Ferrous Iron Acquisition.
Y. Wang, J. C. Wilks, T. Danhorn, I. Ramos, L. Croal, and D. K. Newman (2011)
J. Bacteriol. 193, 3606-3617
   Abstract »    Full Text »    PDF »
Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis.
G. Girard and S. Rigali (2011)
Microbiology 157, 398-407
   Abstract »    Full Text »    PDF »
Activation of the SoxR Regulon in Streptomyces coelicolor by the Extracellular Form of the Pigmented Antibiotic Actinorhodin.
J.-H. Shin, A. K. Singh, D.-J. Cheon, and J.-H. Roe (2011)
J. Bacteriol. 193, 75-81
   Abstract »    Full Text »    PDF »
Expression of the Streptomyces coelicolor SoxR Regulon Is Intimately Linked with Actinorhodin Production.
R. Dela Cruz, Y. Gao, S. Penumetcha, R. Sheplock, K. Weng, and M. Chander (2010)
J. Bacteriol. 192, 6428-6438
   Abstract »    Full Text »    PDF »
D. Lopez, H. Vlamakis, and R. Kolter (2010)
Cold Spring Harb Perspect Biol 2, a000398
   Abstract »    Full Text »    PDF »
Biofilms 2009: New Perspectives at the Heart of Surface-Associated Microbial Communities.
S. Haussler and M. R. Parsek (2010)
J. Bacteriol. 192, 2941-2949
   Full Text »    PDF »
Comprehensive Investigation of Marine Actinobacteria Associated with the Sponge Halichondria panicea.
I. Schneemann, K. Nagel, I. Kajahn, A. Labes, J. Wiese, and J. F. Imhoff (2010)
Appl. Envir. Microbiol. 76, 3702-3714
   Abstract »    Full Text »    PDF »
Biophysical basis for the geometry of conical stromatolites.
A. P. Petroff, M. S. Sim, A. Maslov, M. Krupenin, D. H. Rothman, and T. Bosak (2010)
PNAS 107, 9956-9961
   Abstract »    Full Text »    PDF »
Molecular characterization of FinR, a novel redox-sensing transcriptional regulator in Pseudomonas putida KT2440.
S. Yeom, J. Yeom, and W. Park (2010)
Microbiology 156, 1487-1496
   Abstract »    Full Text »    PDF »
The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin.
T. Vinckx, Q. Wei, S. Matthijs, and P. Cornelis (2010)
Microbiology 156, 678-686
   Abstract »    Full Text »    PDF »
Diversity and Evolution of the Phenazine Biosynthesis Pathway.
D. V. Mavrodi, T. L. Peever, O. V. Mavrodi, J. A. Parejko, J. M. Raaijmakers, P. Lemanceau, S. Mazurier, L. Heide, W. Blankenfeldt, D. M. Weller, et al. (2010)
Appl. Envir. Microbiol. 76, 866-879
   Abstract »    Full Text »    PDF »
Endogenous Phenazine Antibiotics Promote Anaerobic Survival of Pseudomonas aeruginosa via Extracellular Electron Transfer.
Y. Wang, S. E. Kern, and D. K. Newman (2010)
J. Bacteriol. 192, 365-369
   Abstract »    Full Text »    PDF »
Quorum-Sensing Control of Antibiotic Synthesis in Burkholderia thailandensis.
B. A. Duerkop, J. Varga, J. R. Chandler, S. B. Peterson, J. P. Herman, M. E. A. Churchill, M. R. Parsek, W. C. Nierman, and E. P. Greenberg (2009)
J. Bacteriol. 191, 3909-3918
   Abstract »    Full Text »    PDF »
Ferredoxin-NADP+ Reductase from Pseudomonas putida Functions as a Ferric Reductase.
J. Yeom, C. O. Jeon, E. L. Madsen, and W. Park (2009)
J. Bacteriol. 191, 1472-1479
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882