Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 321 (5896): 1690-1692

Copyright © 2008 by the American Association for the Advancement of Science

Reward-Predictive Cues Enhance Excitatory Synaptic Strength onto Midbrain Dopamine Neurons

Garret D. Stuber,1 Marianne Klanker,2 Bram de Ridder,1 M. Scott Bowers,1 Ruud N. Joosten,2 Matthijs G. Feenstra,2 Antonello Bonci1,3*

Abstract: Using sensory information for the prediction of future events is essential for survival. Midbrain dopamine neurons are activated by environmental cues that predict rewards, but the cellular mechanisms that underlie this phenomenon remain elusive. We used in vivo voltammetry and in vitro patch-clamp electrophysiology to show that both dopamine release to reward predictive cues and enhanced synaptic strength onto dopamine neurons develop over the course of cue-reward learning. Increased synaptic strength was not observed after stable behavioral responding. Thus, enhanced synaptic strength onto dopamine neurons may act to facilitate the transformation of neutral environmental stimuli to salient reward-predictive cues.

1 Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA 94608, USA.
2 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands.
3 Wheeler Center for the Neurobiology of Drug Addiction, University of California, San Francisco, San Francisco, CA 94143, USA.

* To whom correspondence should be addressed. E-mail: antonello.bonci{at}ucsf.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Ghrelin Acts as an Interface between Physiological State and Phasic Dopamine Signaling.
J. J. Cone, J. E. McCutcheon, and M. F. Roitman (2014)
J. Neurosci. 34, 4905-4913
   Abstract »    Full Text »    PDF »
Food for Thought: Hormonal, Experiential, and Neural Influences on Feeding and Obesity.
I. N. Karatsoreos, J. P. Thaler, S. L. Borgland, F. A. Champagne, Y. L. Hurd, and M. N. Hill (2013)
J. Neurosci. 33, 17610-17616
   Abstract »    Full Text »    PDF »
Food Restriction Increases Glutamate Receptor-Mediated Burst Firing of Dopamine Neurons.
S. Y. Branch, R. B. Goertz, A. L. Sharpe, J. Pierce, S. Roy, D. Ko, C. A. Paladini, and M. J. Beckstead (2013)
J. Neurosci. 33, 13861-13872
   Abstract »    Full Text »    PDF »
Enriched Encoding: Reward Motivation Organizes Cortical Networks for Hippocampal Detection of Unexpected Events.
V. P. Murty and R. A. Adcock (2013)
Cereb Cortex
   Abstract »    Full Text »    PDF »
Integrating Optogenetic and Pharmacological Approaches to Study Neural Circuit Function: Current Applications and Future Directions.
G. D. Stuber and A. O. Mason (2013)
Pharmacol. Rev. 65, 156-170
   Abstract »    Full Text »    PDF »
GABA Site Agonist Gaboxadol Induces Addiction-Predicting Persistent Changes in Ventral Tegmental Area Dopamine Neurons But Is Not Rewarding in Mice or Baboons.
E. Vashchinkina, A. Panhelainen, O. Y. Vekovischeva, T. Aitta-aho, B. Ebert, N. A. Ator, and E. R. Korpi (2012)
J. Neurosci. 32, 5310-5320
   Abstract »    Full Text »    PDF »
The Contribution of NMDA Receptor Signaling in the Corticobasal Ganglia Reward Network to Appetitive Pavlovian Learning.
J. G. Parker, L. R. Beutler, and R. D. Palmiter (2011)
J. Neurosci. 31, 11362-11369
   Abstract »    Full Text »    PDF »
Ventral tegmental area and substantia nigra neural correlates of spatial learning.
A. K. Martig and S. J. Y. Mizumori (2011)
Learn. Mem. 18, 260-271
   Abstract »    Full Text »    PDF »
Risk preference following adolescent alcohol use is associated with corrupted encoding of costs but not rewards by mesolimbic dopamine.
N. A. Nasrallah, J. J. Clark, A. L. Collins, C. A. Akers, P. E. Phillips, and I. L. Bernstein (2011)
PNAS 108, 5466-5471
   Abstract »    Full Text »    PDF »
Delays Conferred by Escalating Costs Modulate Dopamine Release to Rewards But Not Their Predictors.
M. J. Wanat, C. M. Kuhnen, and P. E. M. Phillips (2010)
J. Neurosci. 30, 12020-12027
   Abstract »    Full Text »    PDF »
Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning.
J. G. Parker, L. S. Zweifel, J. J. Clark, S. B. Evans, P. E. M. Phillips, and R. D. Palmiter (2010)
PNAS 107, 13491-13496
   Abstract »    Full Text »    PDF »
Transition to Addiction Is Associated with a Persistent Impairment in Synaptic Plasticity.
F. Kasanetz, V. Deroche-Gamonet, N. Berson, E. Balado, M. Lafourcade, O. Manzoni, and P. V. Piazza (2010)
Science 328, 1709-1712
   Abstract »    Full Text »    PDF »
Dopaminergic Terminals in the Nucleus Accumbens But Not the Dorsal Striatum Corelease Glutamate.
G. D. Stuber, T. S. Hnasko, J. P. Britt, R. H. Edwards, and A. Bonci (2010)
J. Neurosci. 30, 8229-8233
   Abstract »    Full Text »    PDF »
IP3 Receptor Sensitization during In Vivo Amphetamine Experience Enhances NMDA Receptor Plasticity in Dopamine Neurons of the Ventral Tegmental Area.
K. C. Ahn, B. E. Bernier, M. T. Harnett, and H. Morikawa (2010)
J. Neurosci. 30, 6689-6699
   Abstract »    Full Text »    PDF »
Amphetamine-Associated Contextual Learning Is Accompanied by Structural and Functional Plasticity in the Basolateral Amygdala.
D. J. Rademacher, J. A. Rosenkranz, M. M. Morshedi, E. M. Sullivan, and G. E. Meredith (2010)
J. Neurosci. 30, 4676-4686
   Abstract »    Full Text »    PDF »
Orexin A/Hypocretin-1 Selectively Promotes Motivation for Positive Reinforcers.
S. L. Borgland, S.-J. Chang, M. S. Bowers, J. L. Thompson, N. Vittoz, S. B. Floresco, J. Chou, B. T. Chen, and A. Bonci (2009)
J. Neurosci. 29, 11215-11225
   Abstract »    Full Text »    PDF »
Midbrain dopamine neurons reflect affiliation phenotypes in finches and are tightly coupled to courtship.
J. L. Goodson, D. Kabelik, A. M. Kelly, J. Rinaldi, and J. D. Klatt (2009)
PNAS 106, 8737-8742
   Abstract »    Full Text »    PDF »
Phasic Firing in Dopaminergic Neurons Is Sufficient for Behavioral Conditioning.
H.-C. Tsai, F. Zhang, A. Adamantidis, G. D. Stuber, A. Bonci, L. de Lecea, and K. Deisseroth (2009)
Science 324, 1080-1084
   Abstract »    Full Text »    PDF »
Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior.
L. S. Zweifel, J. G. Parker, C. J. Lobb, A. Rainwater, V. Z. Wall, J. P. Fadok, M. Darvas, M. J. Kim, S. J. Y. Mizumori, C. A. Paladini, et al. (2009)
PNAS 106, 7281-7288
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882