Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 321 (5896): 1693-1695

Copyright © 2008 by the American Association for the Advancement of Science

Molecular Coupling of Xist Regulation and Pluripotency

Pablo Navarro,1 Ian Chambers,2 Violetta Karwacki-Neisius,2 Corinne Chureau,1 Céline Morey,1 Claire Rougeulle,1* Philip Avner1*

Abstract: During mouse embryogenesis, reversion of imprinted X chromosome inactivation in the pluripotent inner cell mass of the female blastocyst is initiated by the repression of Xist from the paternal X chromosome. Here we report that key factors supporting pluripotency—Nanog, Oct3/4, and Sox2—bind within Xist intron 1 in undifferentiated embryonic stem (ES) cells. Whereas Nanog null ES cells display a reversible and moderate up-regulation of Xist in the absence of any apparent modification of Oct3/4 and Sox2 binding, the drastic release of all three factors from Xist intron 1 triggers rapid ectopic accumulation of Xist RNA. We conclude that the three main genetic factors underlying pluripotency cooperate to repress Xist and thus couple X inactivation reprogramming to the control of pluripotency during embryogenesis.

1 Institut Pasteur, Unité de Génétique Moléculaire Murine, CNRS, URA2578, F-75015, Paris, France.
2 Medical Research Council (MRC) Centre Development in Stem Cell Biology, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, MRC EH9 3JQ, Edinburgh, UK.

* To whom correspondence should be addressed. E-mail: rougeull{at} (C.R.); pavner{at} (P.A.)

A systemic transcriptome analysis reveals the regulation of neural stem cell maintenance by an E2F1-miRNA feedback loop.
T. Palm, K. Hemmer, J. Winter, I. B. Fricke, K. Tarbashevich, F. Sadeghi Shakib, I.-M. Rudolph, A.-L. Hillje, P. De Luca, L. Bahnassawy, et al. (2013)
Nucleic Acids Res. 41, 3699-3712
   Abstract »    Full Text »    PDF »
Long Noncoding RNAs: Past, Present, and Future.
J. T. Y. Kung, D. Colognori, and J. T. Lee (2013)
Genetics 193, 651-669
   Abstract »    Full Text »    PDF »
Advances in understanding chromosome silencing by the long non-coding RNA Xist.
T. Sado and N. Brockdorff (2013)
Phil Trans R Soc B 368, 20110325
   Abstract »    Full Text »    PDF »
Epigenetic Regulation by Long Noncoding RNAs.
J. T. Lee (2012)
Science 338, 1435-1439
   Abstract »    Full Text »    PDF »
OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells.
P. Navarro, N. Festuccia, D. Colby, A. Gagliardi, N. P. Mullin, W. Zhang, V. Karwacki-Neisius, R. Osorno, D. Kelly, M. Robertson, et al. (2012)
EMBO J. 31, 4547-4562
   Abstract »    Full Text »    PDF »
An ex Vivo Model for Imprinting: Mutually Exclusive Binding of Cdx2 and Oct4 as a Switch for Imprinted and Random X-Inactivation.
J. A. Erwin, B. del Rosario, B. Payer, and J. T. Lee (2012)
Genetics 192, 857-868
   Abstract »    Full Text »    PDF »
Genomic Imprinting and Epigenetic Control of Development.
A. Fedoriw, J. Mugford, and T. Magnuson (2012)
Cold Spring Harb Perspect Biol 4, a008136
   Abstract »    Full Text »    PDF »
X chromosome inactivation in the cycle of life.
T. S. Barakat and J. Gribnau (2012)
Development 139, 2085-2089
   Abstract »    Full Text »    PDF »
Failure of extra-embryonic progenitor maintenance in the absence of dosage compensation.
J. W. Mugford, D. Yee, and T. Magnuson (2012)
Development 139, 2130-2138
   Abstract »    Full Text »    PDF »
Fifty years of X-inactivation research.
A.-V. Gendrel and E. Heard (2011)
Development 138, 5049-5055
   Abstract »    Full Text »    PDF »
Chromosome silencing mechanisms in X-chromosome inactivation: unknown unknowns.
N. Brockdorff (2011)
Development 138, 5057-5065
   Abstract »    Full Text »    PDF »
Reprogramming capacity of Nanog is functionally conserved in vertebrates and resides in a unique homeodomain.
T. W. Theunissen, Y. Costa, A. Radzisheuskaya, A. L. van Oosten, F. Lavial, B. Pain, L. F. C. Castro, and J. C. R. Silva (2011)
Development 138, 4853-4865
   Abstract »    Full Text »    PDF »
Switching on pluripotency: a perspective on the biological requirement of Nanog.
T. W. Theunissen and J. C. R. Silva (2011)
Phil Trans R Soc B 366, 2222-2229
   Abstract »    Full Text »    PDF »
Transcription factor heterogeneity and epiblast pluripotency.
R. Osorno and I. Chambers (2011)
Phil Trans R Soc B 366, 2230-2237
   Abstract »    Full Text »    PDF »
Role of ATRX in chromatin structure and function: implications for chromosome instability and human disease.
R. De La Fuente, C. Baumann, and M. M. Viveiros (2011)
Reproduction 142, 221-234
   Abstract »    Full Text »    PDF »
Transcription precedes loss of Xist coating and depletion of H3K27me3 during X-chromosome reprogramming in the mouse inner cell mass.
L. H. Williams, S. Kalantry, J. Starmer, and T. Magnuson (2011)
Development 138, 2049-2057
   Abstract »    Full Text »    PDF »
Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells.
M. Casanova, T. Preissner, A. Cerase, R. Poot, D. Yamada, X. Li, R. Appanah, K. Bezstarosti, J. Demmers, H. Koseki, et al. (2011)
Development 138, 1471-1482
   Abstract »    Full Text »    PDF »
Germline competency of parthenogenetic embryonic stem cells from immature oocytes of adult mouse ovary.
Z. Liu, Z. Hu, X. Pan, M. Li, T. A. Togun, D. Tuck, M. Pelizzola, J. Huang, X. Ye, Y. Yin, et al. (2011)
Hum. Mol. Genet. 20, 1339-1352
   Abstract »    Full Text »    PDF »
The different shades of mammalian pluripotent stem cells.
E. W. Kuijk, S. M. Chuva de Sousa Lopes, N. Geijsen, N. Macklon, and B. A. J. Roelen (2011)
Hum. Reprod. Update 17, 254-271
   Abstract »    Full Text »    PDF »
Ftx is a non-coding RNA which affects Xist expression and chromatin structure within the X-inactivation center region.
C. Chureau, S. Chantalat, A. Romito, A. Galvani, L. Duret, P. Avner, and C. Rougeulle (2011)
Hum. Mol. Genet. 20, 705-718
   Abstract »    Full Text »    PDF »
Choice of random rather than imprinted X inactivation in female embryonic stem cell-derived extra-embryonic cells.
K. Murakami, K. Araki, S. Ohtsuka, T. Wakayama, and H. Niwa (2011)
Development 138, 197-202
   Abstract »    Full Text »    PDF »
Impeding Xist Expression from the Active X Chromosome Improves Mouse Somatic Cell Nuclear Transfer.
K. Inoue, T. Kohda, M. Sugimoto, T. Sado, N. Ogonuki, S. Matoba, H. Shiura, R. Ikeda, K. Mochida, T. Fujii, et al. (2010)
Science 330, 496-499
   Abstract »    Full Text »    PDF »
The X as Model for RNA's Niche in Epigenomic Regulation.
J. T. Lee (2010)
Cold Spring Harb Perspect Biol 2, a003749
   Abstract »    Full Text »    PDF »
Induced pluripotent stem cells: what lies beyond the paradigm shift.
J. L. Cox and A. Rizzino (2010)
Experimental Biology and Medicine 235, 148-158
   Abstract »    Full Text »    PDF »
Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression.
F. Savarese, A. Davila, R. Nechanitzky, I. De La Rosa-Velazquez, C. F. Pereira, R. Engelke, K. Takahashi, T. Jenuwein, T. Kohwi-Shigematsu, A. G. Fisher, et al. (2009)
Genes & Dev. 23, 2625-2638
   Abstract »    Full Text »    PDF »
Lessons from X-chromosome inactivation: long ncRNA as guides and tethers to the epigenome.
J. T. Lee (2009)
Genes & Dev. 23, 1831-1842
   Abstract »    Full Text »    PDF »
The transcriptional foundation of pluripotency.
I. Chambers and S. R. Tomlinson (2009)
Development 136, 2311-2322
   Abstract »    Full Text »    PDF »
Genomic imprinting in Singapore: Workshop on Genomic Imprinting.
B. Loppin and R. Oakey (2009)
EMBO Rep. 10, 222-227
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882