Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 321 (5897): 1837-1841

Copyright © 2008 by the American Association for the Advancement of Science

Disruption of the CFTR Gene Produces a Model of Cystic Fibrosis in Newborn Pigs

Christopher S. Rogers,1* David A. Stoltz,1* David K. Meyerholz,2* Lynda S. Ostedgaard,1 Tatiana Rokhlina,1 Peter J. Taft,1 Mark P. Rogan,1 Alejandro A. Pezzulo,1 Philip H. Karp,1,3 Omar A. Itani,1 Amanda C. Kabel,1 Christine L. Wohlford-Lenane,4 Greg J. Davis,1 Robert A. Hanfland,5 Tony L. Smith,5 Melissa Samuel,6 David Wax,6 Clifton N. Murphy,6 August Rieke,6 Kristin Whitworth,6 Aliye Uc,4 Timothy D. Starner,4 Kim A. Brogden,7 Joel Shilyansky,5 Paul B. McCray, Jr.,4 Joseph Zabner,1 Randall S. Prather,6 Michael J. Welsh1,3,8{dagger}

Abstract: Almost two decades after CFTR was identified as the gene responsible for cystic fibrosis (CF), we still lack answers to many questions about the pathogenesis of the disease, and it remains incurable. Mice with a disrupted CFTR gene have greatly facilitated CF studies, but the mutant mice do not develop the characteristic manifestations of human CF, including abnormalities of the pancreas, lung, intestine, liver, and other organs. Because pigs share many anatomical and physiological features with humans, we generated pigs with a targeted disruption of both CFTR alleles. Newborn pigs lacking CFTR exhibited defective chloride transport and developed meconium ileus, exocrine pancreatic destruction, and focal biliary cirrhosis, replicating abnormalities seen in newborn humans with CF. The pig model may provide opportunities to address persistent questions about CF pathogenesis and accelerate discovery of strategies for prevention and treatment.

1 Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
2 Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
3 Howard Hughes Medical Institute (HHMI), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
4 Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
5 Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
6 Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
7 Department of Periodontics and Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA 52242, USA.
8 Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.

* These authors contributed equally to this work.

{dagger} To whom correspondence should be addressed. E-mail: michael-welsh{at}uiowa.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Assessing mucociliary transport of single particles in vivo shows variable speed and preference for the ventral trachea in newborn pigs.
M. J. Hoegger, M. Awadalla, E. Namati, O. A. Itani, A. J. Fischer, A. J. Tucker, R. J. Adam, G. McLennan, E. A. Hoffman, D. A. Stoltz, et al. (2014)
PNAS 111, 2355-2360
   Abstract »    Full Text »    PDF »
Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.
M. Cohen-Cymberknoh, E. Kerem, T. Ferkol, and A. Elizur (2013)
Thorax 68, 1157-1162
   Abstract »    Full Text »    PDF »
Efficiency of porcine somatic cell nuclear transfer - a retrospective study of factors related to embryo recipient and embryos transferred.
Y. Huang, H. Ouyang, H. Yu, L. Lai, D. Pang, and Z. Li (2013)
Biology Open 2, 1223-1228
   Abstract »    Full Text »    PDF »
Dystrophin-deficient pigs provide new insights into the hierarchy of physiological derangements of dystrophic muscle.
N. Klymiuk, A. Blutke, A. Graf, S. Krause, K. Burkhardt, A. Wuensch, S. Krebs, B. Kessler, V. Zakhartchenko, M. Kurome, et al. (2013)
Hum. Mol. Genet. 22, 4368-4382
   Abstract »    Full Text »    PDF »
Advancements in somatic cell nuclear transfer and future perspectives.
K. Lee and R. S. Prather (2013)
Animal Frontiers 3, 56-61
   Abstract »    Full Text »    PDF »
Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease?.
C. A. Hobbs, C. Da Tan, and R. Tarran (2013)
J. Physiol. 591, 4377-4387
   Abstract »    Full Text »    PDF »
The Cystic Fibrosis Intestine.
R. C. De Lisle and D. Borowitz (2013)
Cold Spring Harb Perspect Med 3, a009753
   Abstract »    Full Text »    PDF »
Protein composition of bronchoalveolar lavage fluid and airway surface liquid from newborn pigs.
J. A. Bartlett, M. E. Albertolle, C. Wohlford-Lenane, A. A. Pezzulo, J. Zabner, R. K. Niles, S. J. Fisher, P. B. McCray Jr., and K. E. Williams (2013)
Am J Physiol Lung Cell Mol Physiol 305, L256-L266
   Abstract »    Full Text »    PDF »
Cystic Fibrosis Transmembrane Regulator Correctors and Potentiators.
S. M. Rowe and A. S. Verkman (2013)
Cold Spring Harb Perspect Med 3, a009761
   Abstract »    Full Text »    PDF »
The Cystic Fibrosis of Exocrine Pancreas.
M. Wilschanski and I. Novak (2013)
Cold Spring Harb Perspect Med 3, a009746
   Abstract »    Full Text »    PDF »
Transgenic pig carrying green fluorescent proteasomes.
E. L. Miles, C. O'Gorman, J. Zhao, M. Samuel, E. Walters, Y.-J. Yi, M. Sutovsky, R. S. Prather, K. D. Wells, and P. Sutovsky (2013)
PNAS 110, 6334-6339
   Abstract »    Full Text »    PDF »
Cftr controls lumen expansion and function of Kupffer's vesicle in zebrafish.
A. Navis, L. Marjoram, and M. Bagnat (2013)
Development 140, 1703-1712
   Abstract »    Full Text »    PDF »
CFTR-deficient pigs display peripheral nervous system defects at birth.
L. R. Reznikov, Q. Dong, J.-H. Chen, T. O. Moninger, J. M. Park, Y. Zhang, J. Du, M. S. Hildebrand, R. J. H. Smith, C. O. Randak, et al. (2013)
PNAS 110, 3083-3088
   Abstract »    Full Text »    PDF »
The Cystic Fibrosis Gene: A Molecular Genetic Perspective.
L.-C. Tsui and R. Dorfman (2013)
Cold Spring Harb Perspect Med 3, a009472
   Abstract »    Full Text »    PDF »
Why Mouse Airway Submucosal Gland Serous Cells Do Not Secrete Fluid in Response to cAMP Stimulation.
R. J. Lee and J. K. Foskett (2012)
J. Biol. Chem. 287, 38316-38326
   Abstract »    Full Text »    PDF »
Absence of the cystic fibrosis transmembrane regulator (Cftr) from myeloid-derived cells slows resolution of inflammation and infection.
T. L. Bonfield, C. A. Hodges, C. U. Cotton, and M. L. Drumm (2012)
J. Leukoc. Biol. 92, 1111-1122
   Abstract »    Full Text »    PDF »
Efficient TALEN-mediated gene knockout in livestock.
D. F. Carlson, W. Tan, S. G. Lillico, D. Stverakova, C. Proudfoot, M. Christian, D. F. Voytas, C. R. Long, C. B. A. Whitelaw, and S. C. Fahrenkrug (2012)
PNAS 109, 17382-17387
   Abstract »    Full Text »    PDF »
Fixing cystic fibrosis by correcting CFTR domain assembly.
T. Okiyoneda and G. L. Lukacs (2012)
J. Cell Biol. 199, 199-204
   Abstract »    Full Text »    PDF »
Pancreatic and biliary secretion are both altered in cystic fibrosis pigs.
A. Uc, R. Giriyappa, D. K. Meyerholz, M. Griffin, L. S. Ostedgaard, X. X. Tang, M. Abu-El-Haija, D. A. Stoltz, P. Ludwig, A. Pezzulo, et al. (2012)
Am J Physiol Gastrointest Liver Physiol 303, G961-G968
   Abstract »    Full Text »    PDF »
CFTR, Mucins, and Mucus Obstruction in Cystic Fibrosis.
S. M. Kreda, C. W. Davis, and M. C. Rose (2012)
Cold Spring Harb Perspect Med 2, a009589
   Abstract »    Full Text »    PDF »
CFTR is required for maximal transepithelial liquid transport in pig alveolar epithelia.
X. Li, A. P. Comellas, P. H. Karp, S. E. Ernst, T. O. Moninger, N. D. Gansemer, P. J. Taft, A. A. Pezzulo, M. V. Rector, N. Rossen, et al. (2012)
Am J Physiol Lung Cell Mol Physiol 303, L152-L160
   Abstract »    Full Text »    PDF »
Ileal smooth muscle dysfunction and remodeling in cystic fibrosis.
P.- A. Risse, L. Kachmar, O. S. Matusovsky, M. Novali, F. R. Gil, S. Javeshghani, R. Keary, C. K. Haston, M.- C. Michoud, J. G. Martin, et al. (2012)
Am J Physiol Gastrointest Liver Physiol 303, G1-G8
   Abstract »    Full Text »    PDF »
Comparative Processing and Function of Human and Ferret Cystic Fibrosis Transmembrane Conductance Regulator.
J. T. Fisher, X. Liu, Z. Yan, M. Luo, Y. Zhang, W. Zhou, B. J. Lee, Y. Song, C. Guo, Y. Wang, et al. (2012)
J. Biol. Chem. 287, 21673-21685
   Abstract »    Full Text »    PDF »
Oct4+ Stem/Progenitor Swine Lung Epithelial Cells Are Targets for Influenza Virus Replication.
M. Khatri, S. M. Goyal, and Y. M. Saif (2012)
J. Virol. 86, 6427-6433
   Abstract »    Full Text »    PDF »
Chloride secretion by cultures of pig tracheal gland cells.
J. H. Widdicombe, R. M. Borthwell, M. Hajighasemi-Ossareh, M. E. Lachowicz-Scroggins, W. E. Finkbeiner, J. E. Stevens, and S. Modlin (2012)
Am J Physiol Lung Cell Mol Physiol 302, L1098-L1106
   Abstract »    Full Text »    PDF »
Genetically manipulated mouse models of lung disease: potential and pitfalls.
R. M. Baron, A. J. S. Choi, C. A. Owen, and A. M. K. Choi (2012)
Am J Physiol Lung Cell Mol Physiol 302, L485-L497
   Abstract »    Full Text »    PDF »
First inducible transgene expression in porcine large animal models.
N. Klymiuk, W. Bocker, V. Schonitzer, A. Bahr, T. Radic, T. Frohlich, A. Wunsch, B. Kessler, M. Kurome, E. Schilling, et al. (2012)
FASEB J 26, 1086-1099
   Abstract »    Full Text »    PDF »
The Porcine Chloride Channel Calcium-Activated Family Member pCLCA4a Mirrors Lung Expression of the Human hCLCA4.
S. Plog, T. Grotzsch, N. Klymiuk, U. Kobalz, A. D. Gruber, and L. Mundhenk (2012)
Journal of Histochemistry & Cytochemistry 60, 45-56
   Abstract »    Full Text »    PDF »
Endogenous surface expression of F508-CFTR mediates cAMP-stimulated Cl- current in CFTRF508/F508 pig thyroid epithelial cells.
Y. Li, S. Ganta, and P. Fong (2012)
Exp Physiol 97, 115-124
   Abstract »    Full Text »    PDF »
Thyroid iodide efflux: a team effort?.
P. Fong (2011)
J. Physiol. 589, 5929-5939
   Abstract »    Full Text »    PDF »
Antibody Repertoire Development in Fetal and Neonatal Piglets. XX. B Cell Lymphogenesis Is Absent in the Ileal Peyer's Patches, Their Repertoire Development Is Antigen Dependent, and They Are Not Required for B Cell Maintenance.
J. E. Butler, K. Santiago-Mateo, X.-Z. Sun, N. Wertz, M. Sinkora, and D. H. Francis (2011)
J. Immunol. 187, 5141-5149
   Abstract »    Full Text »    PDF »
Swine Models of Cystic Fibrosis Reveal Male Reproductive Tract Phenotype at Birth.
F. Pierucci-Alves, V. Akoyev, J. C. Stewart III, L.-H. Wang, K. S. Janardhan, and B. D. Schultz (2011)
Biol Reprod 85, 442-451
   Abstract »    Full Text »    PDF »
Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases.
J. Hauschild, B. Petersen, Y. Santiago, A.-L. Queisser, J. W. Carnwath, A. Lucas-Hahn, L. Zhang, X. Meng, P. D. Gregory, R. Schwinzer, et al. (2011)
PNAS 108, 12013-12017
   Abstract »    Full Text »    PDF »
Human cystic fibrosis airway epithelia have reduced Cl- conductance but not increased Na+ conductance.
O. A. Itani, J.-H. Chen, P. H. Karp, S. Ernst, S. Keshavjee, K. Parekh, J. Klesney-Tait, J. Zabner, and M. J. Welsh (2011)
PNAS 108, 10260-10265
   Abstract »    Full Text »    PDF »
The mononuclear phagocyte system of the pig as a model for understanding human innate immunity and disease.
L. Fairbairn, R. Kapetanovic, D. P. Sester, and D. A. Hume (2011)
J. Leukoc. Biol. 89, 855-871
   Abstract »    Full Text »    PDF »
Genetic therapies for cystic fibrosis lung disease.
P. L. Sinn, R. M. Anthony, and P. B. McCray Jr (2011)
Hum. Mol. Genet. 20, R79-R86
   Abstract »    Full Text »    PDF »
The {Delta}F508 Mutation Causes CFTR Misprocessing and Cystic Fibrosis-Like Disease in Pigs.
L. S. Ostedgaard, D. K. Meyerholz, J.-H. Chen, A. A. Pezzulo, P. H. Karp, T. Rokhlina, S. E. Ernst, R. A. Hanfland, L. R. Reznikov, P. S. Ludwig, et al. (2011)
Science Translational Medicine 3, 74ra24
   Abstract »    Full Text »    PDF »
Properties of substance P-stimulated mucus secretion from porcine tracheal submucosal glands.
M. Khansaheb, J. Y. Choi, N. S. Joo, Y.-M. Yang, M. Krouse, and J. J. Wine (2011)
Am J Physiol Lung Cell Mol Physiol 300, L370-L379
   Abstract »    Full Text »    PDF »
Emergent Properties of Proteostasis in Managing Cystic Fibrosis.
W. E. Balch, D. M. Roth, and D. M. Hutt (2011)
Cold Spring Harb Perspect Biol 3, a004499
   Abstract »    Full Text »    PDF »
Thyroid glands from pigs with cystic fibrosis, old issues new ways.
B. J. Scholte (2010)
Exp Physiol 95, 1131
   Full Text »    PDF »
Altered ion transport by thyroid epithelia from CFTR/ pigs suggests mechanisms for hypothyroidism in cystic fibrosis.
H. Li, S. Ganta, and P. Fong (2010)
Exp Physiol 95, 1132-1144
   Abstract »    Full Text »    PDF »
Pigs and humans with cystic fibrosis have reduced insulin-like growth factor 1 (IGF1) levels at birth.
M. P. Rogan, L. R. Reznikov, A. A. Pezzulo, N. D. Gansemer, M. Samuel, R. S. Prather, J. Zabner, D. C. Fredericks, P. B. McCray Jr., M. J. Welsh, et al. (2010)
PNAS 107, 20571-20575
   Abstract »    Full Text »    PDF »
Swine Influenza H1N1 Virus Induces Acute Inflammatory Immune Responses in Pig Lungs: a Potential Animal Model for Human H1N1 Influenza Virus.
M. Khatri, V. Dwivedi, S. Krakowka, C. Manickam, A. Ali, L. Wang, Z. Qin, G. J. Renukaradhya, and C.-W. Lee (2010)
J. Virol. 84, 11210-11218
   Abstract »    Full Text »    PDF »
Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs.
D. Yang, C.-E. Wang, B. Zhao, W. Li, Z. Ouyang, Z. Liu, H. Yang, P. Fan, A. O'Neill, W. Gu, et al. (2010)
Hum. Mol. Genet. 19, 3983-3994
   Abstract »    Full Text »    PDF »
A Decade of Burkholderia cenocepacia Virulence Determinant Research.
S. A. Loutet and M. A. Valvano (2010)
Infect. Immun. 78, 4088-4100
   Abstract »    Full Text »    PDF »
Metabolomic Profiling Reveals Biochemical Pathways and Biomarkers Associated with Pathogenesis in Cystic Fibrosis Cells.
D. R. Wetmore, E. Joseloff, J. Pilewski, D. P. Lee, K. A. Lawton, M. W. Mitchell, M. V. Milburn, J. A. Ryals, and L. Guo (2010)
J. Biol. Chem. 285, 30516-30522
   Abstract »    Full Text »    PDF »
Tissue and Cellular Expression Patterns of Porcine CFTR: Similarities to and Differences From Human CFTR.
S. Plog, L. Mundhenk, M. K. Bothe, N. Klymiuk, and A. D. Gruber (2010)
Journal of Histochemistry & Cytochemistry 58, 785-797
   Abstract »    Full Text »    PDF »
Respiratory Syncytial Virus Engineered To Express the Cystic Fibrosis Transmembrane Conductance Regulator Corrects the Bioelectric Phenotype of Human Cystic Fibrosis Airway Epithelium In Vitro.
A. R. Kwilas, M. A. Yednak, L. Zhang, R. Liesman, P. L. Collins, R. J. Pickles, and M. E. Peeples (2010)
J. Virol. 84, 7770-7781
   Abstract »    Full Text »    PDF »
Pathophysiological preconditions promoting mixed "black" pigment plus cholesterol gallstones in a {Delta}F508 mouse model of cystic fibrosis.
F. Freudenberg, M. R. Leonard, S.-A. Liu, J. N. Glickman, and M. C. Carey (2010)
Am J Physiol Gastrointest Liver Physiol 299, G205-G214
   Abstract »    Full Text »    PDF »
Involvement of CFTR in oviductal HCO3- secretion and its effect on soluble adenylate cyclase-dependent early embryo development.
M. H. Chen, H. Chen, Z. Zhou, Y. C. Ruan, H. Y. Wong, Y. C. Lu, J. H. Guo, Y. W. Chung, P. B. Huang, H. F. Huang, et al. (2010)
Hum. Reprod. 25, 1744-1754
   Abstract »    Full Text »    PDF »
Mucus secretion from individual submucosal glands of the ferret trachea.
H.-J. Cho, N. S. Joo, and J. J. Wine (2010)
Am J Physiol Lung Cell Mol Physiol 299, L124-L136
   Abstract »    Full Text »    PDF »
Hsp 70/Hsp 90 organizing protein as a nitrosylation target in cystic fibrosis therapy.
N. V. Marozkina, S. Yemen, M. Borowitz, L. Liu, M. Plapp, F. Sun, R. Islam, P. Erdmann-Gilmore, R. R. Townsend, C. F. Lichti, et al. (2010)
PNAS 107, 11393-11398
   Abstract »    Full Text »    PDF »
Advances in porcine genomics and proteomics--a toolbox for developing the pig as a model organism for molecular biomedical research.
E. Bendixen, M. Danielsen, K. Larsen, and C. Bendixen (2010)
Briefings in Functional Genomics 9, 208-219
   Abstract »    Full Text »    PDF »
The Development of Lung Disease in Cystic Fibrosis Pigs.
J. J. Wine (2010)
Science Translational Medicine 2, 29ps20
   Full Text »    PDF »
Cystic Fibrosis Pigs Develop Lung Disease and Exhibit Defective Bacterial Eradication at Birth.
D. A. Stoltz, D. K. Meyerholz, A. A. Pezzulo, S. Ramachandran, M. P. Rogan, G. J. Davis, R. A. Hanfland, C. Wohlford-Lenane, C. L. Dohrn, J. A. Bartlett, et al. (2010)
Science Translational Medicine 2, 29ra31
   Abstract »    Full Text »    PDF »
Compartmentalized Cyclic Adenosine 3',5'-Monophosphate at the Plasma Membrane Clusters PDE3A and Cystic Fibrosis Transmembrane Conductance Regulator into Microdomains.
H. Penmatsa, W. Zhang, S. Yarlagadda, C. Li, V. G. Conoley, J. Yue, S. W. Bahouth, R. K. Buddington, G. Zhang, D. J. Nelson, et al. (2010)
Mol. Biol. Cell 21, 1097-1110
   Abstract »    Full Text »    PDF »
Mechanisms of Ca2+-stimulated fluid secretion by porcine bronchial submucosal gland serous acinar cells.
R. J. Lee and J. K. Foskett (2010)
Am J Physiol Lung Cell Mol Physiol 298, L210-L231
   Abstract »    Full Text »    PDF »
Genomic, Tissue Expression, and Protein Characterization of pCLCA1, a Putative Modulator of Cystic Fibrosis in the Pig.
S. Plog, L. Mundhenk, N. Klymiuk, and A. D. Gruber (2009)
Journal of Histochemistry & Cytochemistry 57, 1169-1181
   Abstract »    Full Text »    PDF »
Airway surface liquid depth measured in ex vivo fragments of pig and human trachea: dependence on Na+ and Cl- channel function.
Y. Song, W. Namkung, D. W. Nielson, J.-W. Lee, W. E. Finkbeiner, and A. S. Verkman (2009)
Am J Physiol Lung Cell Mol Physiol 297, L1131-L1140
   Abstract »    Full Text »    PDF »
Significant Improvement in Cloning Efficiency of an Inbred Miniature Pig by Histone Deacetylase Inhibitor Treatment after Somatic Cell Nuclear Transfer.
J. Zhao, J. W. Ross, Y. Hao, L. D. Spate, E. M. Walters, M. S. Samuel, A. Rieke, C. N. Murphy, and R. S. Prather (2009)
Biol Reprod 81, 525-530
   Abstract »    Full Text »    PDF »
Lubiprostone stimulates secretion from tracheal submucosal glands of sheep, pigs, and humans.
N. S. Joo, J. J. Wine, and A. W. Cuthbert (2009)
Am J Physiol Lung Cell Mol Physiol 296, L811-L824
   Abstract »    Full Text »    PDF »
Farm Animal Research in Crisis.
R. M. Roberts, G. W. Smith, F. W. Bazer, J. Cibelli, G. E. Seidel Jr., D. E. Bauman, L. P. Reynolds, and J. J. Ireland (2009)
Science 324, 468-469
   Abstract »    Full Text »    PDF »
Rab11b Regulates the Apical Recycling of the Cystic Fibrosis Transmembrane Conductance Regulator in Polarized Intestinal Epithelial Cells.
M. R. Silvis, C. A. Bertrand, N. Ameen, F. Golin-Bisello, M. B. Butterworth, R. A. Frizzell, and N. A. Bradbury (2009)
Mol. Biol. Cell 20, 2337-2350
   Abstract »    Full Text »    PDF »
Highlights From The Literature.
(2009)
Physiology 24, 4-7
   Full Text »    PDF »
Cancer: a new look at SIRT1 in tumor suppression and DNA repair..
(2008)
Dis. Model. Mech. 1, 185
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882