Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 322 (5898): 92-96

Copyright © 2008 by the American Association for the Advancement of Science

Molecular Architecture of the "Stressosome," a Signal Integration and Transduction Hub

Jon Marles-Wright,1* Tim Grant,2* Olivier Delumeau,1{dagger} Gijs van Duinen,2{ddagger} Susan J. Firbank,1 Peter J. Lewis,3 James W. Murray,1§ Joseph A. Newman,1 Maureen B. Quin,1 Paul R. Race,1 Alexis Rohou,2 Willem Tichelaar,2|| Marin van Heel,2 Richard J. Lewis1

Abstract: A commonly used strategy by microorganisms to survive multiple stresses involves a signal transduction cascade that increases the expression of stress-responsive genes. Stress signals can be integrated by a multiprotein signaling hub that responds to various signals to effect a single outcome. We obtained a medium-resolution cryo–electron microscopy reconstruction of the 1.8-megadalton "stressosome" from Bacillus subtilis. Fitting known crystal structures of components into this reconstruction gave a pseudoatomic structure, which had a virus capsid–like core with sensory extensions. We suggest that the different sensory extensions respond to different signals, whereas the conserved domains in the core integrate the varied signals. The architecture of the stressosome provides the potential for cooperativity, suggesting that the response could be tuned dependent on the magnitude of chemophysical insult.

1 Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK.
2 Faculty of Natural Sciences, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK.
3 School of Environmental and Life Sciences, University of Newcastle, Collaghan, Newcastle, NSW 2308, Australia.

* These authors contributed equally to this work.

{dagger} Present address: Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut de la Recherche Agronomique INRA, 78350 Jouy-en-Josas, France.

{ddagger} Present address: FEI Europe, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands.

§ Present address: Faculty of Natural Sciences, Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, UK.

|| Present address: European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.

To whom correspondence should be addressed. E-mail: r.lewis{at}ncl.ac.uk and m.vanheel{at}imperial.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Osmosensory signaling in Mycobacterium tuberculosis mediated by a eukaryotic-like Ser/Thr protein kinase.
S. K. Hatzios, C. E. Baer, T. R. Rustad, M. S. Siegrist, J. M. Pang, C. Ortega, T. Alber, C. Grundner, D. R. Sherman, and C. R. Bertozzi (2013)
PNAS 110, E5069-E5077
   Abstract »    Full Text »    PDF »
Fluoro-Phenyl-Styrene-Sulfonamide, a Novel Inhibitor of {sigma}B Activity, Prevents the Activation of {sigma}B by Environmental and Energy Stresses in Bacillus subtilis.
D. L. Ringus, A. Gaballa, J. D. Helmann, M. Wiedmann, and K. J. Boor (2013)
J. Bacteriol. 195, 2509-2517
   Abstract »    Full Text »    PDF »
Rate of environmental change determines stress response specificity.
J. W. Young, J. C. W. Locke, and M. B. Elowitz (2013)
PNAS 110, 4140-4145
   Abstract »    Full Text »    PDF »
Two Surfaces of a Conserved Interdomain Linker Differentially Affect Output from the RST Sensing Module of the Bacillus subtilis Stressosome.
T. A. Gaidenko, X. Bie, E. P. Baldwin, and C. W. Price (2012)
J. Bacteriol. 194, 3913-3921
   Abstract »    Full Text »    PDF »
Differentiation of Function among the RsbR Paralogs in the General Stress Response of Bacillus subtilis with Regard to Light Perception.
J. B. van der Steen, M. Avila-Perez, D. Knippert, A. Vreugdenhil, P. van Alphen, and K. J. Hellingwerf (2012)
J. Bacteriol. 194, 1708-1716
   Abstract »    Full Text »    PDF »
Exposure to sublethal clinical radiotherapeutic doses of ionizing {gamma}-radiation gives rise to mutants of Gram-negative and Gram-positive clinical pathogens with increased antibiotic resistance.
P. J. A. Moore, C. E. Goldsmith, W. A. Coulter, B. C. Millar, M. Matsuda, and J. E. Moore (2012)
J. Med. Microbiol. 61, 302-304
   Full Text »    PDF »
Substitutions in the Presumed Sensing Domain of the Bacillus subtilis Stressosome Affect Its Basal Output but Not Response to Environmental Signals.
T. A. Gaidenko, X. Bie, E. P. Baldwin, and C. W. Price (2011)
J. Bacteriol. 193, 3588-3597
   Abstract »    Full Text »    PDF »
Novel {sigma}B regulation modules of Gram-positive bacteria involve the use of complex hybrid histidine kinases.
M. de Been, C. Francke, R. J. Siezen, and T. Abee (2011)
Microbiology 157, 3-12
   Abstract »    Full Text »    PDF »
Stressosomes Formed in Bacillus subtilis from the RsbR Protein of Listeria monocytogenes Allow {sigma}B Activation following Exposure to either Physical or Nutritional Stress.
L. Martinez, A. Reeves, and W. Haldenwang (2010)
J. Bacteriol. 192, 6279-6286
   Abstract »    Full Text »    PDF »
Identification of protein binding surfaces using surface triplet propensities.
W. Mehio, G. J. L. Kemp, P. Taylor, and M. D. Walkinshaw (2010)
Bioinformatics 26, 2549-2555
   Abstract »    Full Text »    PDF »
Physical and antibiotic stresses require activation of the RsbU phosphatase to induce the general stress response in Listeria monocytogenes.
J.-H. Shin, M. S. Brody, and C. W. Price (2010)
Microbiology 156, 2660-2669
   Abstract »    Full Text »    PDF »
Expression of, and in vivo stressosome formation by, single members of the RsbR protein family in Bacillus subtilis.
A. Reeves, L. Martinez, and W. Haldenwang (2010)
Microbiology 156, 990-998
   Abstract »    Full Text »    PDF »
Red Light Activates the {sigma}B-Mediated General Stress Response of Bacillus subtilis via the Energy Branch of the Upstream Signaling Cascade.
M. Avila-Perez, J. B. van der Steen, R. Kort, and K. J. Hellingwerf (2010)
J. Bacteriol. 192, 755-762
   Abstract »    Full Text »    PDF »
A Comprehensive Proteomics and Transcriptomics Analysis of Bacillus subtilis Salt Stress Adaptation.
H. Hahne, U. Mader, A. Otto, F. Bonn, L. Steil, E. Bremer, M. Hecker, and D. Becher (2010)
J. Bacteriol. 192, 870-882
   Abstract »    Full Text »    PDF »
In Vivo Mutational Analysis of YtvA from Bacillus subtilis: MECHANISM OF LIGHT ACTIVATION OF THE GENERAL STRESS RESPONSE.
M. Avila-Perez, J. Vreede, Y. Tang, O. Bende, A. Losi, W. Gartner, and K. Hellingwerf (2009)
J. Biol. Chem. 284, 24958-24964
   Abstract »    Full Text »    PDF »
Role of RsbU in Controlling SigB Activity in Staphylococcus aureus following Alkaline Stress.
J. Pane-Farre, B. Jonas, S. W. Hardwick, K. Gronau, R. J. Lewis, M. Hecker, and S. Engelmann (2009)
J. Bacteriol. 191, 2561-2573
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882